В) Качественная реакция на фенолы взаимодействие фенола с хлоридом железа

С6Н5ОН + FeCl3 —> фиолетовое окрашивание

Получение фенола путем окисления пероксидом водорода бензола

Фенол - ядовит!!! При попадании на кожу вызывает ожоги, при этом он всасывается через кожу и вызывает отравление.Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин, а также гидрохинон (пара- дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – фенолоальдегидных смол, полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Задача. Вывести молекулярную формулу углеводорода по данным: массовая доля углерода — 83,33%, массовая доля водорода — 16,67%, относительная плотность по воздуху равна 1,45.

БИЛЕТ 12

1. Электрохимический ряд активности (напряжения) металлов показывает их сравнительную активность в реакциях окисления-восстановления (сверху вниз восстановительная активность уменьшается):

Строение атомов металлов определяет не только характерные физические свойства простых веществ – металлов, но и общие их химические свойства. При большом многообразии все химические реакции металлов относятся к окислительно – восстановительным и могут быть только двух типов: соединения и замещения. Металлы способны при химических реакциях отдавать электроны, то есть быть восстановителями, проявлять в образовавшихся соединениях только положительную степень окисления.

В общем виде это можно выразить схемой:
Ме0 — ne → Me+n,
где Ме – металл – простое вещество, а Ме0+n – металл химический элемент в соединении.

Металлы способны отдавать свои валентные электроны атомам неметаллов, ионам водорода, ионам других металлов, а поэтому будут реагировать с неметаллами — простыми веществами, водой, кислотами, солями. Однако восстановительная способность металлов различна. Состав продуктов реакции металлов с различными веществами зависит и от окислительной способности веществ и условий, при которых протекает реакция.

При высоких температурах большинство металлов сгорает в кислороде:

2Mg + O2 = 2MgO

Не окисляются в этих условиях только золото, серебро, платина и некоторые другие металлы.

С галогенами многие металлы реагируют без нагревания. Например, порошок алюминия при смешивании с бромом загорается:

2Al + 3Br2 = 2AlBr3

При взаимодействии металлов с водой в некоторых случаях образуются гидроксиды. Очень активно при обычных условиях взаимодействуют с водой щелочные металлы, а также кальций, стронций, барий. Схема этой реакции в общем виде выглядит так:

Ме + HOH → Me(OH)n + H2

Другие металлы реагируют с водой при нагревании: магний при её кипении, железо в парах воды при красном кипении. В этих случаях получаются оксиды металлов.

Если металл реагирует с кислотой, то он входит в состав образующейся соли. Когда металл взаимодействует с растворами кислоты, он может окисляться ионами водорода, имеющимися в этом растворе. Сокращённое ионное уравнение в общем виде можно записать так:

Me + nH+ → Men+ + H2

Более сильными окислительными свойствами, чем ионы водорода, обладают анионы таких кислородосодержащих кислот, как например, концентрированная серная и азотная. Поэтому с этими кислотами реагируют те металлы, которые не способны окисляться ионами водорода, например, медь и серебро.

При взаимодействии металлов с солями происходит реакция замещения: электроны от атомов замещающего — более активного металла переходят к ионам замещаемого — менее активного металла. То сеть происходит замещение металла металлом в солях. Данные реакции не обратимы: если металл А вытесняет металл В из раствора солей, то металл В не будет вытеснять металл А из раствора солей.

В порядке убывания химической активности, проявляемой в реакциях вытеснения металлов друг друга из водных растворов их солей, металлы располагаются в электрохимическом ряду напряжений (активности) металлов: Li, K, Rb, Cs, Ba, Ca, Na, Mg, Al, Mn, Cr, Zn,, Cd, Co, Ni, Sn, Pb, H2, Cu, Ag, Hg, Pt, Au.

Металлы, расположенные в этом ряду левее, более активны и способны вытеснять следующие за ними металлы из растворов солей.

В электрохимический ряд напряжений металлов включён водород, как единственный неметалл, разделяющий с металлами общее свойство — образовывать положительно заряженные ионы. Поэтому водород замещает некоторые металлы в их солях и сам может замещаться многими металлами в кислотах, например:

Zn + 2 HCl = ZnCl2 + H2↑ + Q

Металлы, стоящие в электрохимическом ряду напряжений до водорода, вытесняют его из растворов многих кислот (соляной, серной и др.), а все следующие за ним, например, медь не вытесняют.

2. Альдегиды Органические соединения, в молекуле которых имеется карбонильная группа >С=O, называются карбонильными соединениями, или оксосоединениями. Карбонильные соединения делятся на две большие группы — альдегиды и кетоны.

Общая формула для альдегидов – СnH2nO

“Отличительными” суффиксами в названиях альдегидов и кетонов служат соответственно - аль и - он.

Альдегидная группа может располагаться только на конце молекулы. Нумерация самой длинной цепи в альдегидах начинается с углерода альдегидной группы, а её положение (цифра 1) в названии не указывается.

В кетонах же карбонильная группа может находиться и в середине углеродной цепи, поэтому в названии после суффикса -он через дефис указывается её положение. Нумеруют самую длинную цепь в кетонах с того конца, к которому ближе карбонильная группа.

Если, помимо карбонильной группы, соединение содержит двойную или тройную связь, то цифру, показывающую её положение в цепи, удобно ставить до основы названия.

Насекомые общаются между собой, выделяя ничтожные количества органических соединений, имеющих сравнительно небольшие молекулы. Такие вещества называются феромонами. Феромоны делят на половые, возбуждающие, успокаивающие, сбора, тревоги и другие. Чувствительность насекомых к феромонам просто поразительна: самец ночной бабочки большой павлиний глаз чувствует половой феромон самки на расстоянии до 10 км! Синтетические феромоны используются для борьбы с вредными насекомыми путем заманивания их в ловушки, дезориентации в период спаривания, отпугивания.

Муравьи для подачи сигнала тревоги выделяют два феромона. Формулы этих феромонов вы сейчас видите на экране. Дайте названия этим веществам.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: