Лекция 2. Электропроводность электролитов

Вещества, водные растворы которых проводят электрический ток, называются электролитами. В отличие от металлов (электронная проводимость) или полупроводников (электронно-дырочная проводимость) у электролитов — ионная проводимость.

Иногда электролитами называют и сами проводящие растворы, хотя более правильное выражение — раствор электролита. Электролитами являются соли, кислоты, щелочи и т. п., т. е. вещества, атомы в молекулах которых связаны ионными (иногда гетерополярными ковалентными связями). При растворении таких веществ в воде происходит диссоциация молекул на ионы. Причиной электролитической диссоциации является взаимодействие молекул растворенного вещества с молекулами воды. Молекула воды имеет большой дипольный момент (р = 6,1 • 10-30 Кл • м, а ε — 81), поэтому на расстоянии около 0,1 нм (среднее межмолекулярное расстояние в жидкости) вокруг молекулы воды существует довольно сильное электрическое поле. Последнее и является непосредственной причиной, ослабляющей силу электростатического взаимодействия ионов в растворенной молекуле. Энергия взаимодействия ионов в молекулах электролитов близка к энергии взаимодействия между этими же ионами и молекулами воды. Поэтому в процессе растворения соли или щелочи за счет тепловых соударений происходит распад молекул на ионы.

Положительные ионы называются катионами, отрицательные — анионами. Процесс диссоциации идет всегда обратимо — наряду с диссоциацией имеет место и рекомбинация ионов.

Если молекулы растворенного вещества в воде не диссоциируют на ионы, то раствор не является проводником. Водные растворы сахаров, глицерина и т. п.изоляторы.

Результатом диссоциации является образование сольватов. когда молекулы воды «обволакивают» ионы, образуя вокруг них сольватную оболочку (рис. 2.1).

Сольватация приводит к двум важным последствиям:

1) сольватная оболочка препятствует рекомбинации ионов, поэтому при малых концентрациях диссоциация полная:

2) наличие сольватной оболочки затрудняет движение ионов — в электрическом поле движется не ион, а сольват; заряд сольвата меньше заряда иона (экранирующий эффект сольватной оболочки), а размеры — больше.

Для возникновения электрического тока в электролите необходимо в ванну с раствором электролита опустить электроды из проводящего материала (металл, уголь и т. п.), к которым подключить источник ЭДС (рис. 2.1). Такое устройство называют гальванической, или электролитической ванной.

Процессы, происходящие вблизи электродов (на расстоянии 1-10 диаметров молекул), будут существенно отличаться от процессов в толще раствора.

Биологические жидкости являются электролитами. В этих средах под воздействием электрического поля возникает упорядоченное (направленное) движение свободных электрических зарядов (электронов, ионов или сольватов) — электрический ток. В толще раствора положительные сольваты будут двигаться к катоду со скоростью , а отрицательные - к аноду со скоростью . Скалярной характеристикой электрического тока является сила тока (I), равная отношению заряда (Dq), переносимого через сечение проводника или некоторую поверхность за интервал времени D t, к этому интервалу:

(1)

Если электрический ток равномерно распределен по сечению проводника, то отношение силы тока к площади сечения проводника (S) называется плотностью тока (j):

(2)

Установим связь плотности тока с некоторыми характеристиками носителей тока, молярной концентрацией и скоростью направленного движения частиц. Запишем эту формулу для плотности потока частиц, заменив молярную концентрацию с концентрацией п:

(3)

Если эту формулу умножить на заряд q носителя тока, то произведение qJ будет соответствовать заряду, проходящему через единицу площади сечения за одну секунду, т.е. будет являться плотностью тока:

(4)

Как видно, плотность тока прямо пропорциональна заряду носителя тока, концентрации носителей и скорости их направленного движения. Естественно, что выражение (4) справедливо при равенстве зарядов носителей тока и одинаковой их скорости.

Плотность тока для электролитов следует представить в виде суммы выражений для плотности тока для положительных и отрицательных ионов, т.е. суммарная плотность тока равна:

(5)

Если предположить, что каждая молекула диссоциирует на два иона, то концентрация положительных и отрицательных ионов одинакова:

(6)

где α — коэффициент диссоциации, п — концентрация молекул электролита.

Направленное движение ионов в электрическом поле можно приближенно считать равномерным, при этом сила qE, действующая на ион со стороны электрического поля, уравновешивается силой трения rv

(7)

откуда, заменяя q/r = b, получаем

(8)

Коэффициент пропорциональности b называют подвижностью носителей заряда (ионов). Он равен отношению скорости направленного движения ионов, вызванного электрическим полем, к напряженности этого поля. Подвижность носителей заряда b связана с подвижностью и диффундирующих частиц соотношением b = uq.

Для ионов разных знаков из (8) соответственно имеем

. (9)

Подставляя (6) и (9) в (5), находим

. (10)

Представим электролит в виде прямоугольного параллелепипеда с гранями-электродами площадью S, расположенными на расстоянии l (рис. 2.2.). Считая поле однородным, учитывая, что

, (11)

преобразуем (10):

. (12)

Так как I = jS, то (12) соответствует закону Ома для участка цепи без источника тока: , где

(13)

- сопротивление электролита. Сравнивая с соотношением , получаем

. (14)

Отсюда следует, что удельная проводимость электролита g тем больше, чем больше концентрация ионов, их заряд и подвижность.

При повышении температуры электропроводность электролитов растет, так как возрастает степень диссоциации и подвижность ионов, уменьшается вязкость раствора и увеличивается электропроводность.

Вблизи поверхности электрода протекают более сложные процессы, которые являются скорее электрохимическими, чем чисто физическими:

а) на аноде происходит электроокисление анионов, на катоде — электровосстановление катионов, а также происходит еще ряд электрических процессов; в целом эти процессы называют поляризационными явлениями;

б) вблизи поверхности электродов могут идти также вторичные химические реакции.

При достаточно малых потенциалах на электродах не идут окислительно-восстановительные процессы, поэтому для гальванической ванны в целом существуют области потенциалов, где зависимость тока от напряжения не подчиняется закону Ома.

При достаточно больших потенциалах может начаться выделение вещества на электродах в виде осадка (осаждение на электроде) или газа. Количественно эти процессы описываются законами Фарадея.

Первый закон Фарадея: масса выделившегося на электроде вещества пропорциональна электрическому заряду, протекающему через электролит:

(15)

где М — масса вещества, q — заряд, I — сила тока и t — время. Коэффициент k, называемый электрохимическим эквивалентом вещества, показывает, какая масса вещества выделится на электроде при прохождении через электролит заряда, равного 1 Кл.

Второй закон Фарадея: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам:

(16)

где А — атомный вес элемента; Z — его валентность: A/Z — химический эквивалент элемента.

Число Фарадея F численно равно электрическому заряду, который должен пройти через электролит, чтобы на электроде выделился один килограмм-эквивалент вещества. F = 9,6487×107 Кл/кг-экв.

В результате электровосстановления или электроокисления ионов электролита на электродах образуются электронейтральные атомы, которые вовсе необязательно будут осаждаться на электродах или выделяться в виде пузырьков газа — они могут вступить в химические реакции с раствором вблизи электрода. Такие процессы и будут вторичными реакциями.

Все эти процессы находят применение в различных отраслях техники, многие из них используются также в медицине


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: