Вещества, водные растворы которых проводят электрический ток, называются электролитами. В отличие от металлов (электронная проводимость) или полупроводников (электронно-дырочная проводимость) у электролитов — ионная проводимость.
Иногда электролитами называют и сами проводящие растворы, хотя более правильное выражение — раствор электролита. Электролитами являются соли, кислоты, щелочи и т. п., т. е. вещества, атомы в молекулах которых связаны ионными (иногда гетерополярными ковалентными связями). При растворении таких веществ в воде происходит диссоциация молекул на ионы. Причиной электролитической диссоциации является взаимодействие молекул растворенного вещества с молекулами воды. Молекула воды имеет большой дипольный момент (р = 6,1 • 10-30 Кл • м, а ε — 81), поэтому на расстоянии около 0,1 нм (среднее межмолекулярное расстояние в жидкости) вокруг молекулы воды существует довольно сильное электрическое поле. Последнее и является непосредственной причиной, ослабляющей силу электростатического взаимодействия ионов в растворенной молекуле. Энергия взаимодействия ионов в молекулах электролитов близка к энергии взаимодействия между этими же ионами и молекулами воды. Поэтому в процессе растворения соли или щелочи за счет тепловых соударений происходит распад молекул на ионы.
Положительные ионы называются катионами, отрицательные — анионами. Процесс диссоциации идет всегда обратимо — наряду с диссоциацией имеет место и рекомбинация ионов.
Если молекулы растворенного вещества в воде не диссоциируют на ионы, то раствор не является проводником. Водные растворы сахаров, глицерина и т. п. — изоляторы.
Результатом диссоциации является образование сольватов. когда молекулы воды «обволакивают» ионы, образуя вокруг них сольватную оболочку (рис. 2.1).
Сольватация приводит к двум важным последствиям:
1) сольватная оболочка препятствует рекомбинации ионов, поэтому при малых концентрациях диссоциация полная:
2) наличие сольватной оболочки затрудняет движение ионов — в электрическом поле движется не ион, а сольват; заряд сольвата меньше заряда иона (экранирующий эффект сольватной оболочки), а размеры — больше.
Для возникновения электрического тока в электролите необходимо в ванну с раствором электролита опустить электроды из проводящего материала (металл, уголь и т. п.), к которым подключить источник ЭДС (рис. 2.1). Такое устройство называют гальванической, или электролитической ванной.
Процессы, происходящие вблизи электродов (на расстоянии 1-10 диаметров молекул), будут существенно отличаться от процессов в толще раствора.
Биологические жидкости являются электролитами. В этих средах под воздействием электрического поля возникает упорядоченное (направленное) движение свободных электрических зарядов (электронов, ионов или сольватов) — электрический ток. В толще раствора положительные сольваты будут двигаться к катоду со скоростью , а отрицательные - к аноду со скоростью . Скалярной характеристикой электрического тока является сила тока (I), равная отношению заряда (Dq), переносимого через сечение проводника или некоторую поверхность за интервал времени D t, к этому интервалу:
(1)
Если электрический ток равномерно распределен по сечению проводника, то отношение силы тока к площади сечения проводника (S) называется плотностью тока (j):
(2)
Установим связь плотности тока с некоторыми характеристиками носителей тока, молярной концентрацией и скоростью направленного движения частиц. Запишем эту формулу для плотности потока частиц, заменив молярную концентрацию с концентрацией п:
(3)
Если эту формулу умножить на заряд q носителя тока, то произведение qJ будет соответствовать заряду, проходящему через единицу площади сечения за одну секунду, т.е. будет являться плотностью тока:
(4)
Как видно, плотность тока прямо пропорциональна заряду носителя тока, концентрации носителей и скорости их направленного движения. Естественно, что выражение (4) справедливо при равенстве зарядов носителей тока и одинаковой их скорости.
Плотность тока для электролитов следует представить в виде суммы выражений для плотности тока для положительных и отрицательных ионов, т.е. суммарная плотность тока равна:
(5)
Если предположить, что каждая молекула диссоциирует на два иона, то концентрация положительных и отрицательных ионов одинакова:
(6)
где α — коэффициент диссоциации, п — концентрация молекул электролита.
Направленное движение ионов в электрическом поле можно приближенно считать равномерным, при этом сила qE, действующая на ион со стороны электрического поля, уравновешивается силой трения rv
(7)
откуда, заменяя q/r = b, получаем
(8)
Коэффициент пропорциональности b называют подвижностью носителей заряда (ионов). Он равен отношению скорости направленного движения ионов, вызванного электрическим полем, к напряженности этого поля. Подвижность носителей заряда b связана с подвижностью и диффундирующих частиц соотношением b = uq.
Для ионов разных знаков из (8) соответственно имеем
. (9)
Подставляя (6) и (9) в (5), находим
. (10)
Представим электролит в виде прямоугольного параллелепипеда с гранями-электродами площадью S, расположенными на расстоянии l (рис. 2.2.). Считая поле однородным, учитывая, что
, (11)
преобразуем (10):
. (12)
Так как I = jS, то (12) соответствует закону Ома для участка цепи без источника тока: , где
(13)
- сопротивление электролита. Сравнивая с соотношением , получаем
. (14)
Отсюда следует, что удельная проводимость электролита g тем больше, чем больше концентрация ионов, их заряд и подвижность.
При повышении температуры электропроводность электролитов растет, так как возрастает степень диссоциации и подвижность ионов, уменьшается вязкость раствора и увеличивается электропроводность.
Вблизи поверхности электрода протекают более сложные процессы, которые являются скорее электрохимическими, чем чисто физическими:
а) на аноде происходит электроокисление анионов, на катоде — электровосстановление катионов, а также происходит еще ряд электрических процессов; в целом эти процессы называют поляризационными явлениями;
б) вблизи поверхности электродов могут идти также вторичные химические реакции.
При достаточно малых потенциалах на электродах не идут окислительно-восстановительные процессы, поэтому для гальванической ванны в целом существуют области потенциалов, где зависимость тока от напряжения не подчиняется закону Ома.
При достаточно больших потенциалах может начаться выделение вещества на электродах в виде осадка (осаждение на электроде) или газа. Количественно эти процессы описываются законами Фарадея.
Первый закон Фарадея: масса выделившегося на электроде вещества пропорциональна электрическому заряду, протекающему через электролит:
(15)
где М — масса вещества, q — заряд, I — сила тока и t — время. Коэффициент k, называемый электрохимическим эквивалентом вещества, показывает, какая масса вещества выделится на электроде при прохождении через электролит заряда, равного 1 Кл.
Второй закон Фарадея: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам:
(16)
где А — атомный вес элемента; Z — его валентность: A/Z — химический эквивалент элемента.
Число Фарадея F численно равно электрическому заряду, который должен пройти через электролит, чтобы на электроде выделился один килограмм-эквивалент вещества. F = 9,6487×107 Кл/кг-экв.
В результате электровосстановления или электроокисления ионов электролита на электродах образуются электронейтральные атомы, которые вовсе необязательно будут осаждаться на электродах или выделяться в виде пузырьков газа — они могут вступить в химические реакции с раствором вблизи электрода. Такие процессы и будут вторичными реакциями.
Все эти процессы находят применение в различных отраслях техники, многие из них используются также в медицине