Расположение эллипса и гиперболы относительно исходной системы координат

Координаты нового начала (центра) - решение системы

Угловой коэффициент новой оси (в случае )


Расположение параболы относительно исходной системы координат

Координаты вершины - решение системы, определяемой уравнением параболы и уравнением ее оси:

или

Параметр параболы:

Направляющий вектор оси (в сторону ее вогнутости):

Поверхности второй степени

Канонические уравнения

Сфера

Сфера радиуса R с центром в начале координат:

Параметрические уравнения:

Сфера радиуса R с центром в точке S (a; b; c):


Эллипсоид (рис. 4.18)

Каноническое уравнение:

- трехосный эллипсоид;

- эллипсоид вращения вокруг оси Oz;

- эллипсоид вращения вокруг оси Oy;

- эллипсоид вращения вокруг оси Ox;

- сфера.

Сечения эллипсоида плоскостями - либо эллипс (окружность), либо точка, либо .


Конус второй степени (рис. 4.19)

Каноническое уравнение:

a = b - конус вращения (прямой круговой).

Сечения конуса плоскостями: в плоскости, пересекающей все прямолинейные образующие, - эллипс; в плоскости, параллельной одной прямолинейной образующей, - парабола; в плоскости, параллельной двум прямолинейным образующим, - гипербола; в плоскости, проходящей через вершину конуса, - пара пересекающихся прямых или точка (вершина).

Однополостный гиперболоид (рис. 4.20)

Каноническое уравнение:

a = b - однополостный гиперболоид вращения вокруг оси Oz.

Горловой эллипс:

Асимптотический конус:

Сечения однополостного гиперболоида плоскостями - либо эллипс, либо парабола, либо гипербола, либо пара прямых (прямолинейных образующих).


Прямолинейные образующие

Через произвольную точку проходят две прямолинейные образующие с направляющими векторами и где:

В частности, если точку выбирать на горловом эллипсе то уравнениями прямолинейных образующих будут:

Двуполостный гиперболоид (рис. 4.21)

Каноническое уравнение:

a = b - двуполостный гиперболоид вращения вокруг оси Oz.

Асимптотический конус:

Сечения двуполостного гиперболоида плоскостями: либо эллипс, либо гипербола, либо парабола, либо точка, либо .


Эллиптический параболоид (рис. 4.22)

Каноническое уравнение:

p = q - параболоид вращения вокруг оси Oz.

Сечения эллиптического параболоида плоскостями - либо эллипс, либо парабола, либо точка, либо .

Гиперболический параболоид (рис. 4.23)

Каноническое уравнение:

Сечения гиперболического параболоида плоскостями - либо гипербола, либо парабола, либо пара прямых (прямолинейных образующих).


Прямолинейные образующие

Через каждую точку проходят две прямолинейные образующие:


Эллиптический цилиндр (рис. 4.24)

Каноническое уравнение:

при a = b - круговой цилиндр.

Гиперболический цилиндр (рис. 4.25)

Каноническое уравнение:


Параболический цилиндр (рис. 4.26)

Каноническое уравнение:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: