Тригонометрическая форма записи комплексных чисел

Изобразим комплексное число вектором. Длина этого вектора, т.е. величина называется модулем комплексного числа и обозначается . Если -- действительное число, то приходим к «школьному» модулю, ибо . Если , то угол, который образует вектор с действительной осью называется аргументом комплексного числа и обозначается Пусть – модуль и аргумент ненулевого комплексного числа. Тогда

(1)

Выражение называется тригонометрической формой записи комплексного числа.

Свойства модуля. Для любых комплексных чисел имеют место соотношения:

а) ,

б) (неравенство треугольника);

Докажем первое равенство:

Извлекая квадратный корень, получим равенство . Второе равенство следует из первого, ибо оно эквивалентно следующему соотношению: .

Докажем неравенство треугольника. Обозначая и возводя в квадрат, заменяем это неравенство на равносильное:

Возводя в квадрат в левой части и сокращая, получаем эквивалентное неравенство

Это неравенство будет следовать из неравенства

которое, после возведения в квадрат и сокращения, превращается в неравенство

Последнее неравенство несомненно верно. □

Следствие. Множество комплексных чисел с единичным модулем (обозначим: комплексная единичная окружность) замкнуто относительно умножения и обращения.

Перемножим два комплексных числа в тригонометрической форме записи:

Применяя тригонометрические формулы «косинус суммы» и «синус суммы», приходим к следующему правилу: при перемножении комплексных чисел модули умножаются, а аргументы складываются

(2)

В частности, перемножая число на себя n раз, получаем формулу Муавра:

Умножая произвольное комплексное число-вектор на комплексное число вида , увеличиваем аргумент у комплексного числа на величину , не меняя модуля. Это преобразование соответствует повороту комплексной плоскости на угол Умножение на положительное действительное число есть гомотетия комплексной плоскости (растяжение в раз, если и сжатие в раз, если ). Итак, преобразование

представляет из себя последовательное выполнение двух геометрических преобразований над вектором -- поворота и гомотетии. В этом и заключается геометрический смысл умножения комплексных чисел.

Пример. Вычислим . Для этого сначала найдем модуль и аргумент числа :

Для того чтобы найти аргумент изобразим комплексное число вектором, очевидно лежащем на биссектрисе первого квадранта, и ответ или, по другому, станет понятен. Далее


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: