Этот метод также рассмотрим в дальнейшем на примере.
Пример 3.1. Дана система 3-го порядка. Решить систему:
а) Методом Крамера (по формулам Крамера);
б) С помощью обратной матрицы (матричным методом).
1). 
а) Решаем по формулам Крамера. Найдем:
,
значит система имеет единственное решение, которое найдем по формулам Крамера:
;
;
.
Составим определители для неизвестных и найдем их:
;


;
;
.
Проверка. Подставим найденные значения в исходную систему:

б) Решим систему матричным методом.
Решением будет
.

Найдем обратную матрицу по формуле
.
- согласно предыдущему способу. Составим
, для этого найдем алгебраические дополнения:
; | ; | ; |
; | ; | ; |
; | ; | . |



Ответ:
;
;
.
2). 
Найдем определитель системы:

Так как система неоднородная и
, то система несовместна (не имеет решения).
3). 
Найдем определитель системы:

Определители для неизвестных
, так как имеют нулевой столбик. Значит система совместна и определена, имеет единственное нулевое решение:

4). 
Найдем определитель системы:

Система совместна и неопределена, так как она однородная. Запишем систему в виде:
- уберем второе уравнение (убирать можно любое).
Далее запишем:

Решим методом Крамера:


Итак
- общее решение,
где
и
- зависимые переменные;
Найдем частное решение. Т.е. положим
.
Получим:
.
Сделаем проверку:
- верно.
Задание 3.1. Решить системы линейных алгебраических уравнений
а) Методом Крамера (по формулам Крамера);
б) С помощью обратных матриц.
Сделать проверку.
№1.
1. ; | 2. ; |
3. ; | 4. ; |
5. ; | 6. ; |
7. ; | 8. ; |
9. ; | 10. ; |
11. ; | 12. ; |
13. ; | 14. ; |
15. ; | 16. ; |
17. ; | 18. ; |
19. ; | 20. ; |
21. ; | 22. ; |
23. ; | 24. ; |
25. ; | 26. ; |
27. ; | 28. ; |
29. ; | 30. . |
№2.
1. ; | 2. ; |
3. ; | 4. ; |
5. ; | 6. ; |
7. ; | 8. ; |
9. ; | 10. ; |
11. ; | 12. ; |
13. ; | 14. ; |
15. ; | 16. ; |
17. ; | 18. ; |
19. ; | 20. ; |
21. ; | 22. ; |
23. ; | 24. ; |
25. ; | 26. ; |
27. ; | 28. ; |
29. ; | 30. . |
№3.
1. ; | 2. ; |
3. ; | 4. ; |
5. ; | 6. ; |
7. ; | 8. ; |
9. ; | 10. ; |
11. ; | 12. ; |
13. ; | 14. ; |
15. ; | 16. ; |
17. ; | 18. ; |
19. ; | 20. ; |
21. ; | 22. ; |
23. ; | 24. ; |
25. ; | 26. ; |
27. ; | 28. ; |
29. ; | 30. . |
№4.
1. ; | 2. ; |
3. ; | 4. ; |
5. ; | 6. ; |
7. ; | 8. ; |
9. ; | 10. ; |
11. ; | 12. ; |
13. ; | 14. ; |
15. ; | 16. ; |
17. ; | 18. ; |
19. ; | 20. ; |
21. ; | 22. ; |
23. ; | 24. ; |
25. ; | 26. ; |
27. ; | 28. ; |
29. ; | 30. . |
Пример 3.1. Дана система линейных алгебраических уравнений.

Решить ее:
А) методом Гаусса
б) методом Жордана-Гаусса.
Решение:
а) Решаем методом Гаусса. Запишем расширенную матрицу системы:

1шаг:
Элементы первой строки умножаем на 2 и сложим с соответствующими элементами 2-й строки, затем элемент 1-й строки умножим на 3 и сложим с 3-й строкой, умножим на 4 и сложим с 4-й строкой. Получим эквивалентную матрицу:
~
~
2 шаг.
Поменяем местами 2-й и 4-й столбцы, отметим, в эквивалентной матрице какой переменной соответствуют столбцы.
~
~
Шаг.
Умножим элементы 2-й строки на (-1) и сложим с элементами 3-й и 4-й строк.
~
~
Шаг.
Поменяем местами 3-ю и 4-ю строки
~ 
теперь уже точно система приведена к треугольному виду.
Обратный ход:

Проверка. Подставим найденные значения в исходную систему.

получим тождества

Ответ: 
;
;
;
;
;
;
;
;
.
-
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
.
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
.
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
.
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
.