Пример 1.
1.
- 1-го порядка;
2.
- 3-го порядка.
Определение 4. Решением дифференциального уравнения называется любая функция
, которая при подстановке в это уравнение обращает его в тождество.
1. Функция
является решением уравнения
:
,
, 

- верно.
2. Функция
является решением уравнения
: 

- верно.
Определение 5. Процесс отыскания решения дифференциального уравнения называется его интегрированием, а график решения дифференциального уравнения – интегральной кривой.
Определение 6. Общим решением дифференциального уравнения
порядка называется такое его решение
, которое является функцией переменной
и
произвольных постоянных
.
Определение 7. Частным решением дифференциального уравнения
порядка называется решение, получаемое из общего решения при подстановке вместо постоянных
конкретных числовых значений.
Пример 3. Для дифференциального равнения
общим решением является
, а
является одним из частных решений.
Для того, чтобы составить дифференциальное уравнение, которому удовлетворяют кривые заданного семейства
, следует продифференцировать это равенство
раз, считая что
- функция независимой переменной
, а затем из полученных равенств и
исключить
.
Пример 4. Составить дифференциальное уравнение семейства кривых
.
Решение:
1) Дифференцируем заданную функцию 2 раза
:



;






.
2) Исключим из этих двух уравнений постоянную
:



.
Определение 8. Общим интегралом называется общее решение, записанное в неявном виде.
Определение 9. Частным интегралом называется частное решение, записанное в неявном виде.
Решить дифференциальное уравнение - значит найти его общее решение или общий интеграл.






