Вероятность
того, что в последовательности
независимых испытаний число
успехов находится в интервале
определяется выражением
. (28.1)
Получим асимптотику выражения (28.1) при тех же условиях, которые были определены для локальной теоремы Муавра-Лапласа. При этом
определяется формулой (27.18). Подставим (27.18) в (28.1), тогда
(28.2)
где
. (28.3)
Поскольку
, то
при
. Пусть
,
. (28.4)
Тогда при
сумма в выражении (28.2) переходит в интеграл:
. (28.5)
Этот результат носит название интегральная теорема Муавра-Лапласа. Соотношение (28.5) можно представить через функцию Лапласа:
. (28.6)
Практическое применение интегральной теоремы основано на приближенном равенстве:
. (28.7)
Для функции
составлены подробные таблицы, которые обычно используются при решении задач. Вместо функции Лапласа (28.6) может быть использован интеграл ошибок:
. (28.8)
Функции
и
связаны соотношением:
.
Если в таблицах даны значения
только для
, тогда значения
при
можно вычислить, используя очевидное равенство
.
Рассмотрим примеры вычисления вероятностей с использованием теоремы Муавра-Лапласа.
1. Какова вероятность того, что при 200 бросаниях монеты герб выпадет 100 раз?
Для вычисления вероятности можно использовать локальную асимптотику (27.18). Здесь
,
,
,
,
. Поскольку
, то
. Подставим полученные результаты в (27.18), тогда:
.
2. Какова вероятность того, что при 200 бросаниях герб выпадет в интервале от 80 до 120 раз?
Решать эту задачу удобно, используя интегральную асимптотику из (28.7). Здесь
,
,
,
. Необходимо найти
. Определим по формулам (28.4)
,
.
Теперь по (28.7):
.






