Градиент функции

В каждой точке области D, в которой задана функция , определим вектор, проекциями которого на оси координат являются значения частных производных этой функции в соответствующей точке:

Этот вектор называется градиентом функции . Говорят, что в области D определено векторное поле градиентов. Докажем следующую теорему, устанавливающую связь между градиентом и производной по направлению.

Теорема. Пусть дано скалярное поле  и определено в этом скалярном поле поле градиентов .

Тогда производная по направлению некоторого вектора равняется проекции вектора на вектор .

Доказательство. Рассмотрим единичный вектор , соответствующий вектору :

.

Вычислим скалярное произведение векторов и :

.

Выражение, стоящее в правой части этого равенства, есть производная от функции по направлению вектора . Следовательно, справедливо

.

Если обозначим угол между векторами и через ,то можем написать:

или .

Теорема доказана.

На основании доказанной теоремы наглядно устанавливается связь между градиентом и производной в данной точке по любому направлению.

Установим некоторые свойства градиента:

1) Производная в данной точке по направлению вектора имеет наибольшее значение, если направление вектора совпадает с направлением градиента; это наибольшее значение производной равно .

2) Производная по направлению вектора, перпендикулярного к вектору , равна нулю.

Замечание. Если функция  есть функция двух переменных, то вектор

направлен перпендикулярно к линии уровня , лежащей в плоскости и проходящей через соответствующую точку.

Пример. Определить градиент функции  в точке .

Решение. Частные производные

,

в точке  будут равны

, .

Следовательно,

.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: