double arrow

Краткая характеристика мышечных белков

Миоген (в данном учебном пособии под миогеном подразумевается вся миогеновая фракция А, В и С) составляет примерно 20 % всех белков волокна. Он представляет собой полноценный белок, растворимый в воде. Температура денатурации свободного от солей миогена 55...60 °С, изоэлектрическая точка в интервале pH 6,0...6,5. По истечении определенного времени часть миогена переходит в нерастворимое состояние.

Миоальглобулины составляют примерно 1...2 % белковых веществ мышечного волокна. Растворимы в воде, нерастворимы в кислой среде, так как имеют изоэлектрическую точку около pH 3,0...3,5; температура их денатурации 45...47 °С.

Глобулин X составляет около 20 % общего количества мышечного волокна. Этот полноценный белок растворим в солевых растворах даже при низких концентрациях. Температура денатурации 50 °С при pH 6,5 и около 80 °С при pH 7,0. Изоэлектрическая точка располагается в области pH 5,0.

Миоглобин-хромопротеид составляет примерно 0,6... 1,0 % общего количества белков. Состоит из белковой и простетической группы — гема. Гем миоглобина идентичен тему гемоглобина, но на одну молекулу миоглобина приходится одна группа гема; белковая часть отличается от белковой части гемоглобина. В миоглобине отсутствует цистин. В воде мио глобин растворим. Температура денатурации около 60 °С. При денатурации происходит отщепление простетической группы. Миоглобин способен присоединять азота оксид, сероводород и кислород за счет дополнительных связей. При присоединении кислорода образуется оксимиоглобин, который по истечении определенного времени переходит в метмиоглобин буро-коричневого цвета, при этом железо отдает один электрон. Под действием восстановителей метмиоглобин снова образует миоглобин. Эти превращения сходны с превращениями гемоглобина.

Интенсивность окраски мяса зависит от содержания миоглобина, так как он окрашен в темно-коричневый цвет. При переходе более 50 % миоглобина в метмиоглобин окраска мяса становится коричневой.

Миопротеиды — сложные белки, температура денатурации высокая, около 100 °С. Содержание в мышечном волокне незначительно. К группе протеидов относятся также некоторые ферменты мышечного волокна.

Миозин — фибриллярный полноценный белок с асимметрией молекул 10 : 1, составляет примерно 40 % белков волокна. При центрифугировании разделяется на 4 фракции. В данном учебном пособии под миозином подразумевается вся миозиновая фракция. Чистый белок растворим в воде с образованием вязкого раствора, содержащего до 4 % белка, в солевых растворах повышенной концентрации (до 0,6 моль) также растворим. Миозин может взаимодействовать с актином, образуя актомиозин, и с аденозинтрифосфорной кислотой (АТФ), когда он выступает в качестве фермента. В этом случае образуются аденозиндифосфорная (АДФ) и ортофосфорная кислоты и выделяется энергия, которая расходуется на сокращение волокна.

Температура денатурации миозина 45...50 °С (у птицы около 51 °С). Изоэлектрическая точка при pH 5,4.

Актин — полноценный белок, переваривается пищеварительными ферментами, в волокне его содержится около 12... 15 %. Растворим в двумолярных растворах нейтральных солей при длительном воздействии, осаждается солями кальция, денатурирует при температуре около 50 °С. Под действием растворимых солей щелочных и щелочноземельных металлов (в определенных концентрациях) он переходит в фибриллярную форму в результате линейной агрегации молекул. При удалении этих солей снова превращается в глобулярный актин. Фибриллярный актин образуется при замораживании мышечной ткани в результате увеличения концентрации содержащихся в ней солей.

Актомиозин — комплексный белок. В нем содержится около 2/3 миозина и 1/3 актина. Образуется актомиозин в результате взаимодействия SH-групп миозина (при определенных условиях) с оксигруппами фибриллярного актина. Растворителями извлекается актомиозин, содержащий около 1/5 актина. В присутствии АТФ и в зависимости от ее концентрации актомиозин частично или полностью диссоциирует на миозин и актин. Это изменение тесно связано с сокращением и посмертным окоченением мышц. В составе мышечной ткани актомиозин (в зависимости от условий) может находиться в ассоциированной или частично диссоциированной форме, содержащей неопределенное количество актина. Актомиозин растворим в солевых растворах достаточно высокой концентрации. При этом чем больше в нем актина, тем выше требуется концентрация солей. При разбавлении актин осаждается. Температура денатурации актомио- зина 42...48 °С.

Тропомиозин — фибриллярный неполноценный белок с асимметрией молекулы 1 : 25. По свойствам и аминокислотному составу близок к миозину, но не содержит триптофан. Содержание его в волокне около 0,5 %. В присутствии нейтральных солей образует вязкие растворы, в которых диспергируется солями на частицы различных размеров. Изоэлектрическая точка при pH 4,6.

Нуклеопротеиды — сложные белки, образованные щелочными белками — гистонами и нуклеиновой кислотой. Это полноценные белки; они составляют небольшую часть белков мышечного волокна.

Примерно 6...7 % белков мышечного волокна составляют белки стромы, состоящие преимущественно из белков типа коллагена и эластина.

Большинство белковых веществ мышечного волокна обладает свойствами ферментов.

В состав мышечного волокна входят представители всех групп ферментов: ферменты расщепления с участием воды и ортофосфорной кислоты — гидролазы и фосфорилазы; окислительно-восстановительные ферменты (переносчики электронов); десмолазы, катализирующие расщепление связей между атомами углерода; феразы, катализирующие перенос групп атомов между различными соединениями; изомеразы, катализирующие внутримолекулярные переносы. В связи с этим в мышечном волокне возможны самые разнообразные ферментативные превращения. Однако после убоя животного (птицы) в связи с прекращением поступления кислорода в клетки на первый план выступает разрушительная деятельность ферментов, преимущественно гидролаз и фосфорилаз, которая приводит к существенным изменениям белковой, липидной и углеводной фракций и многих экстрактивных веществ.

Влияние окислительно-восстановительных ферментов в посмертных превращениях мышечной ткани в достаточной мере еще не выяснено, хотя, несомненно, их действие имеет практическое значение. Миоглобин обладает пероксидазными свойствами и способствует окислению жира. Каталаза, разрушающая перекись водорода, присутствует в доброкачественном мясе и не обнаруживается в недоброкачественном, что может быть использовано при оценке качества мяса.

Липиды мышечной ткани. В зависимости от вида и упитанности животных тщательно отпрепарированная мышечная ткань содержит разное количество липидов. Часть этих липидов, главным образом глицеридов, находится в тончайших прослойках соединительной ткани и легко извлекается органическими растворителями. Другие липиды входят в состав волокна и не полностью извлекаются растворителями.

Липиды, находящиеся в волокне, распределены в саркоплазме и связаны с фибриллами. Среди них обнаружены глицериды и небольшое количество свободных жирных кислот. Состав глицеридов волокна отличается от состава глицеридов жировой ткани большим содержанием высоконепредельных и летучих жирных кислот.

В липидах мышечной ткани коровы летучие жирные кислоты (уксусная, пропионовая, бутиловая, валериановая, изовалериановая, гексоновая, октановая) составляют около 0,17 %.

Примерно 0,20...0,25 % липидов приходится на долю фосфатидов, преимущественно лецитина. В небольшом количестве в мышцах обнаружены стериды и холестерин (50...60 мг% массы мышц). Часть липидов мышечного волокна и холестерина наряду с белками органически входит в его структуру; другая представляет собой промежуточные продукты обмена веществ.

Полиненасыщенные жирные кислоты, фосфолипиды и холестерин — необходимые компоненты пищи. Поданным НИИ питания РАМН, суточная потребность человека в полиненасыщен- ных кислотах в среднем составляет 3...6 г, фосфолипидах — 5 г, холестерине — 0,3...0,6 г.

Большинство прочих органических веществ извлекается (экстрагируется) при обработке мяса водой, поэтому их называют экстрактивными. Многие из них претерпевают глубокие химические изменения с момента прекращения жизненных процессов в тканях с образованием других веществ. Поэтому состав этой фракции мышечной ткани качественно и количественно непостоянен, что вызывает изменения и некоторых важных свойств мяса.

Прочие органические вещества мышечной ткани в соответствии с особенностями их состава и значением можно разделить на три группы: азотистые, безазотистые, витамины. В свою очередь, азотистые небелковые вещества подразделяются на азотистые основания, аминокислоты и прочие азотистые вещества.

Азотистые основания представлены основаниями группы карнозина (карнозин, ансерин), основаниями группы креатина (креатин, креатинин, метилгуанидин), основаниями группы холина (холин, карнитин, бетаин), а также пуриновыми и пиримидиновыми основаниями (аденин, гуанин, гипоксантин и др.).

Общее содержание свободных аминокислот в мышечной ткани не превышает 0,7 % ее массы. Их состав непостоянен и меняется с течением времени после прекращения жизни животного.

Из прочих азотистых небелковых веществ к наиболее важным относятся креатинфосфорная (КРФ), аденозинтрифосфорная (АТФ), аденозиндифосфорная (АДФ), аденозинмонофосфор- ная, или адениловая (АМФ), инозиновая кислоты, глутатион, глутамин, мочевина, аммонийные соли.

Несмотря на сравнительно небольшое относительное содержание азотистых экстрактивных веществ, их роль в питании значительна, так как они включают вкусовые, ароматические и биологически активные вещества. Сырое мясо обладает слабым кисловатым запахом и вкусом. Специфический аромат и вкус, присущие каждому виду мяса, появляются лишь после тепловой обработки. Таким образом, в сыром мясе содержатся компоненты, которые, видоизменяясь при нагреве, образуют ароматические и вкусовые вещества.

Среди экстрактивных веществ присутствуют химические раздражители секреции желудочных желез. Как установил акад. И. П. Павлов, без них мясо остается в желудке долгое время, практически не перевариваясь. Мясной экстракт (или навар) он относит к лучшим возбудителям желудочного сока. Эти свойства мясного экстракта обусловлены некоторыми азотистыми основаниями (метилгуанидином, карнозином, карнитином), содержащимися в мышцах.

Количество аммонийных солей в мышечной ткани колеблется в больших пределах (3... 12 мг%). Аммонийный азот иногда обнаруживается даже непосредственно после убоя. Его количество зависит от физиологического состояния и увеличивается в мышцах больных и усталых животных. С течением времени после убоя оно возрастает в результате распада мочевины и дезаминирования глутамина и аспарагина. Содержание аммонийного азота может также возрастать и при порче мяса.

В число важнейших безазотистых органических компонентов мышечной ткани входят гликоген и продукты его фосфоролиза (гексозофосфорные эфиры, молочная кислота) и амилолиза (декстрины, мальтоза, глюкоза). Их количество зависит от физиологического состояния животных перед убоем и от глубины автолитических процессов после убоя, в ходе которых гликоген расщепляется до низкомолекулярных соединений.

Часть гликогена мышечного волокна связана с белками (миозином, миогеном), другая находится в свободном состоянии. Количество гликогена в парном мясе в среднем составляет 450... 900 мг%, но может превышать 1 %. В мышцах плохо откормленных, истощенных и больных животных его в 2...3 раза меньше, чем в мышцах откормленных животных, находящихся в нормальном физиологическом состоянии. В разных мышцах содержание гликогена различно: в усиленно работающих мышцах его почти в 1,5 раза больше, чем в мало работающих.

Соответственно количеству гликогена изменяется и содержание в мышцах продукта его распада, в том числе и молочной кислоты. Ее количество колеблется в пределах 150...700 мг% и наряду с некоторыми другими кислотами (фосфорной, пировиноградной, янтарной) определяет величину pH мышечной ткани. Количество моносахаридов в пересчете на глюкозу колеблется в пределах 0,6...0,09 мг%.

В состав мышечной ткани входят почти все водорастворимые витамины. Для различных видов животных и разного их состояния количество витаминов неодинаково. Ниже приведено примерное содержание водорастворимых витаминов в мышечной ткани животных, мг%.

К витаминам относится также холин, содержащийся в мышцах в количестве 80... 110 мг%. В липидной части мышц содержится некоторое количество витамина А (около 0,02 мг%).

Минеральные вещества. В составе мышечной ткани обнаружены металлы: калий, натрий, кальций, магний, железо, цинк. Эти металлы частично связаны с белковыми коллоидами мышечного волокна, заряженными в большинстве отрицательно, частично с неорганическимианионами пиро- и ортофосфорной, серной, соляной, угольной кислот, с которыми образуют электролиты. В белках мышц больше катионов, чем анионов, в мышечной жидкости — наоборот. Некоторые электролиты (соли угольной, фосфорной кислот) играют роль буферных систем мышечного волокна. Железо входит в состав миоглобина. Количество минеральных фосфорных соединений колеблется в связи с распадом органических фосфорсодержащих составных частей мышечной ткани. В мышцах в незначительном количестве (примерно 0,06...0,08 мг%) содержатся микроэлементы: медь, марганец, никель, кобальт и другие, являющиеся компонентами ферментных систем.

В состав мышечной ткани кроме перечисленных минеральных составных частей входит сероводород. Количество сероводорода незначительно и обычно не превышает 0,5 мг%. Но иногда оно может достигать 12...20 мг%, что обычно связано с особенностями технологической обработки мяса. При порче мяса содержание сероводорода в нем резко возрастает.

Соединительная ткань

Основу соединительной ткани составляют коллагеновые и эластиновые волокна. Коллагеновые волокна преимущественно имеют лентовидную форму, хотя известно пять их морфологических вариантов; эластиновые волокна нитевидной формы. Коллагеновые и эластиновые волокна вместе с перепонками образуют губчатую структуру соединительной ткани, в ячейках которой содержится тканевая жидкость. Клеточные элементы в соединительной ткани немногочисленны, хотя и разнообразны.

В зависимости от соотношения в составе соединительной ткани коллагеновых и эластиновых волокон и других морфологических элементов различают ее разновидности: плотную, рыхлую и эластическую. Плотная соединительная ткань содержит преимущественно коллагеновые волокна. Она образует сухожилия, связки, оболочки мускулов и внутренних органов, входит в состав кожи. Рыхлая соединительная ткань в отличие от плотной содержит больше клеточных элементов. Она главным образом связывает другие ткани и мускулы между собой, а также кожу с поверхностнрй фасцией. На основе этой ткани развивается жировая ткань. В эластической ткани преобладают эластиновые волокна. Эта ткань входит в выйную затылочно-шейную связку, желтую фасцию живота и стенки крупных кровеносных сосудов.

Коллагеновые волокна в большинстве случаев являются преобладающим структурным элементом соединительной ткани. Они собраны в пучки различной толщины, ветвящиеся на мелкие волоконца, которые, соединяясь между собой в крупные пучки, образуют единую сложную сетчатую структуру — «вязь». Коллагеновые волокна отличаются большой прочностью: их временное сопротивление разрыву достигает 200...640 МПа.

Основу структуры коллагеновых волокон составляют элементарные волоконца, образованные протофибриллами диаметром около 0,05 мкм, которые составляют фибриллы с поперечником 0,3...0,5 мкм. Из фибрилл образованы первичные волокна (поперечник около 10 мкм), а затем сложные волокна — пучки, покрытые тончайшей оболочкой. В пучках фибриллы связаны аморфным веществом, растворяющимся в щелочах и разрушающимся под действием протеолитических ферментов. Коллагеновые волокна содержат около 37 % сухого остатка, в составе которого до 35 % органических веществ, преимущественно коллагена.

В отличие от коллагеновых волокон эластиновые обладают микроскопически однородной структурой. Однако под действием эластазы они распадаются на фибриллы. Их толщина различна: некоторые едва видны под микроскопом, другие по размеру приближаются к коллагеновым волокнам средней величины. Прочность эластиновых волокон меньше прочности коллагеновых: их сопротивление на разрыв 100...200 МПа. В составе эластиновых волокон около 42 % сухого остатка, из которого 0,2 % приходятся на долю минеральных веществ. В составе органических веществ около 32 % эластина и немного коллагена.

Высокая прочность коллагеновых и упругость эластиновых волокон обусловливают прочностные свойства соединительной ткани в целом, которые значительно превосходят такие же свойства мышечной ткани. Если сопротивление резанию различных мускулов колеблется в пределах 0,013...0,086 МПа, то для соединительной ткани оно составляет 0,27...0,40 МПа.

Химический состав соединительной ткани различен и зависит главным образом от соотношения в ней количества коллагеновых и эластиновых волокон. В некоторых видах соединительной ткани (рыхлая соединительная ткань, сухожилия) преобладает коллаген, и в таких тканях несколько больше воды. Другие виды соединительной ткани содержат больше эластина и беднее водой. Так, в состав сухожилий входит до 32 % коллагена и лишь 0,7 % эластина, а в состав выйной связки — до 32 % эластина и лишь 1,6 % коллагена.

Свойства, пищевая ценность и промышленное значение соединительной ткани определяются свойствами коллагена и эластина и их количественным соотношением.

Коллаген неоднороден. Его элементарные частицы — коллагеновые протофибриллы — представляют собой систему колластроминовых нитей и проколлагеновой обкладки. В проколлагеновой обкладке упорядоченно расположен углеводный компонент коллагена — мукополисахарид (гиалуроновая кислота), обусловливающий поперечную исчерченность фибрилл. Даже в очищенном препарате коллагена обнаруживается до 0,65 % углеводов. Таким образом, в коллагеновых волокнах содержится, по меньшей мере, два белка и углеводный компонент, которые, будучи связанными между собой, определяют своеобразие свойств коллагеновых волокон: их прочность, эластичность, устойчивость к растворителям, нагреванию в воде и действию протеолитических ферментов. Эти свойства зависят от того, какая доля мукополисахарида прочно или лабильно связана с белковой частью. Чем больше углеводного компонента связано прочно, тем отчетливее выражены эти свойства.

Мукополисахариды входят также в состав межуточного вещества, цементирующего коллагеновые фибриллы в коллагеновые волокна. Мукополисахариды растворимы в щелочах. В дальнейшем под словом «коллаген» подразумевается комплекс, образованный колластромином и проколлагеном.

В зависимости от анатомического происхождения соединительной ткани различают коллаген волокнистый (сухожилия и кожа), гиалиновый (кость), хондриновый (хрящи). Аминокислотный состав коллагенов разного происхождения несколько различается, но во всех случаях в коллагене очень мало метионина и отсутствует триптофан.

Нативный коллаген нерастворим в воде, но набухает в ней. Он медленно переваривается пепсином и почти не переваривается трипсином и панкреатическим соком, но расщепляется коллагеназой на цепочки параллельно оси волокна. При нагреве коллагена до '60...70 °С и тщательной механической деструкции переваривающее действие пепсина усиливается. Таким образом, коллаген, хотя и сравнительно медленно, все же может усваиваться организмом, который выделят его больше, чем получает с пищей. В умеренных количествах коллаген сберегает в пище полноценные белки и выполняет роль пищевых волокон.

При нагревании препаратов коллагена с водой до 58...65 °С коллагеновые волокна резко (примерно на 1/3) сокращаются. При этом, по-видимому, разрушаются только связи, удерживающие полипептидные цепочки в направлении продольной оси структуры коллагена. Происходят неупорядоченное изгибание и скручивание полипептидных цепей, а также разрыв части преимущественно водородных связей в молекуле коллагена. Это явление называется свариванием коллагена. Сваренный коллаген более доступен действию пепсина. Его прочность резко снижается: например, сопротивление резанию соединительной ткани.

При дальнейшем осторожном нагреве коллагена полностью разрываются водородные и солевые связи, удерживающие полипептидные цепочки в структуре коллагена, без заметного нарушения связей внутри цепей. Этот процесс, протекающий с участием воды, известен под названием пептизации коллагена. Продукт пептизации, состоящий из нескольких связанных друг с другом полипептидных цепочек, называется глютином.

Практически одновременно с образованием глютина происходит гидролитический распад части полипептидных цепочек на более мелкие звенья, в совокупности образующие полидисперсный продукт гидролиза глютина — смесь желатоз (глютоз).

Тщательное механическое разрушение коллагена в воде приводит к нарушению структуры коллагена по плоскостям расположения водородных и солевых связей. Происходит разволокнение коллагена на полипептидные цепочки и образуется продукт, сходный с желатином.

Эластин не содержит триптофана, и в нем очень мало метионина и гистидина. Он почти не переваривается пепсином, медленно — трипсином и сравнительно легко — эластазой. Он очень устойчив к действию химических реагентов, не изменяется в растворах кислот и щелочей, выдерживает длительный нагрев при 125 °С. Следовательно, эластин практически не имеет какой- либо пищевой ценности.


Сейчас читают про: