Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

III. Последний многочлен не имеет вещественных корней




I. Любые два соседних многочлена не имеют общих корней

Теорема Штурма

Определение 2.7Последовательность многочленов назовём последовательностью многочленов Штурма, если она удовлетворяет следующим условиям:

II. Если a – корень при i>0, то

IV. Если в окрестностях корня a многочлена сам многочлен возрастает, то , а если убывает, то

Для последовательности многочленов F и числа a определим w(a) – число перемен знака в числовой последовательности (нули игнорируем).

Теорема 2.21 Штурма

Число различных корней многочлена на отрезке равно .

Доказательство. Пусть корни многочленов из ряда Штурма F, принадлежащие отрезку и упорядоченные в порядке возрастания. Поскольку, многочлен может изменить знак только при прохождении через корень, то для любых точек из интервала число перемен знака заведомо одно и тоже. Если корень многочлена (i>0) то последовательность при достаточно малом по модулю значению y даёт только одну перемену знака, т.к. по условию II на концах стоят числа разных знаков. Следовательно, число перемен знака может измениться только при прохождении через корень многочлена . По условию IV, число перемен знака может только уменьшаться.

Пусть многочлен f(x) не имеет кратных корней. Построим последовательность многочленов: , , и далее, - остаток от деления на умноженный на -1.

Данная последовательность многочленов будет последовательностью многочленов Штурма. Действительно, условие IV выполнено по свойству производной. Наибольший общий делитель многочлена и его производной равен 1, т.к. нет кратных корней. Таким образом, последний многочлен в ряду равен константе и не имеет вещественных корней. Из равенства вытекает условие II. Подставив x=a, где a – корень , получим . Общего корня у соседних многочленов не может быть, так как его наличие приводит к существованию кратных корней у .





Дата добавления: 2014-02-02; просмотров: 684; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9272 - | 7387 - или читать все...

Читайте также:

  1. Cavitas nasi, полость носа, имеет отверстия
  2. I. Графический способ отделения корней
  3. I. Проблема сознания в различных философских системах.. В политеизме древних греков время выступает как циклическое; история не имеет направленности
  4. II. Отделения корней программным способом
  5. III. Непрерывность вещественных чисел
  6. More than binary (ternary, quaternary, etc.) многочленные
  7. Адрес электронной почты записывается только латинскими буквами и не должен содержать пробелов. Например, почтовый сервер компании МТУ-Интел имеет имя
  8. Анализ многочлена
  9. Анализ ср-в, направляемых на ОТ.. На каждом предприятии большое значение имеет анализ труда, в процессе которого следует осуществлять систематический контроль за использованием фонда оплаты
  10. Анализ эффективности использования трудовых ресурсов. Большое значение для оценки эффективности использования трудовых ресурсов на предприятиях имеет показатель рентабельности персонала(Rппп):
  11. Аудирование. 1. Каждый имеет право на пользование родным языком и культурой, на свободный выбор языка общения, воспитания и твор


 

18.206.16.123 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.001 сек.