Зависимость скорости химической реакции от температуры

Скорость химической реакции при данной температуре пропорциональна произведению концентраций реагирующих веществ в степени, равной стехиометрическому коэффициенту, стоящему перед формулой данного вещества в уравнении реакции.

Закон действия масс справедлив только для наиболее простых по своему механизму реакций взаимодействия, протекающих в газах или в разбавленных растворах.

Для гомогенных реакций:

1. aA(Ж) + bB(Ж) ↔ cC(Ж) + dD(Ж) ; (T=const)

2. 3H2(Г) + N2(Г) ↔ 2NH3(Г);

Для гетерогенных реакций:

1. aA(т) + bB(Г) = cC(Г) + dD(Г); 2. С (т)2(Г)=СО2(Г);

В законе действия масс не учитываются концентрации веществ, находящихся в твердой фазе. Чем больше площадь поверхности твердой фазы, тем выше скорость химической реакции.

k – константа скорости химической реакции определяется природой реагирующих веществ и зависит от температуры, от присутствия в системе катализатора, но не зависит от концентрации реагирующих веществ. Константа скорости представляет собой скорость химической реакции (), если концентрации реагирующих веществ .

3. Зависимость скорости химической реакции от давления. Для газообразных систем увеличение давления или уменьшение объема, равноценно увеличению концентрации и наоборот.

Задача: Как изменится скорость химической реакции 2SO2(г) + O2(г) 2SO3(г), если давление в системе увеличить в 4 раза?

В соответствие с законом действия масс для прямой реакции, записываем выражение:

, пусть [SO2] = a моль/л, [O2] = b моль/л, тогда по закону действия масс

Уменьшение объема в 4 раза соответствует увеличению концентрации в системе в 4 раза, тогда:

;

.

Влияние температуры на скорость химической реакции приближенно определяется правилом Вант-Гоффа. При повышении температуры на 100С скорость химической реакции возрастает в 2-4раза.

Математическая запись правила Вант-Гоффа: γ - температурный коэффициент скорости реакции или коэффициент Вант-Гоффа  для большинства реакций лежит в пределах 2-4.

Задача. Во сколько раз изменится скорость химической реакции, протекающей в газовой фазе, если температура изменилась от 80 0С до 120 0С (γ = 3)?

В соответствии с правилом Вант-Гоффа записываем:

Увеличение скорости химической реакции при повышении температуры объясняется не только увеличением кинетической энергии взаимодействующих молекул. Например, число столкновений молекул растет пропорционально корню квадратному из абсолютной температуры. При нагревании веществ от нуля до ста градусов по Цельсию, скорость движения молекул возрастает в 1,2 раза, а скорость химической реакции возрастает примерно в 59 тысяч раз. Такое резкое увеличение скорости реакции с ростом температуры объясняется долей активных молекул, столкновения которых приводит к химическому взаимодействию. Согласно теории активных столкновений в реакцию вступают только активные молекулы, энергия которых превышает среднюю энергию молекул данного вещества, т.е. молекулы, обладающие энергией активации.

Энергия активации (EА) – это тот избыток энергии по сравнению со средним запасом, которым должны обладать молекулы для осуществления химической реакции. Если ЕА< 40 кДж/моль – реакции протекают быстро, если ЕА > 120 кДж/моль – реакции не идут, если ЕА = 40-120 кДж/моль – реакции протекают в обычных условиях. Повышение температуры снижает энергию активации, делает вещества более реакционно-способными, скорость взаимодействия при этом увеличивается.

Более точную зависимость скорости химической реакции от температуры установил C. Аррениус: константа скорости реакции пропорциональна основанию натурального логарифма, возведенного в степень (–ЕА/RT). ,

А – предэкспоненциальный множитель, определяет число активных соударений;

е – экспонента (основание натурального логарифма).

Логарифмируя выражение , получим уравнение:

. Уравнение Аррениуса показывает, что скорость реакции тем выше, чем меньше энергия активации. Для снижения энергии активации используют катализаторы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: