double arrow

Расчет изменения энтропии в различных процессах

Второй закон термодинамики в виде , записанный для равновесных процессов, позволяет вычислить не абсолютное значение энтропии, а только разность энтропий в двух состояниях системы.

.

Расчет изменения энтропии в необратимых процессах.

Запишем равенство и неравенство Клаузиуса для обратимого и необратимого процесса:

; (12)

Пусть система из состояния 1 в состояние 2 перейдет двумя путями - обратимым и необратимым. Поскольку энтропия есть функция состояния, то ее изменение не зависит от пути перехода системы из одного состояния в другое, т.е. DSнеобр = DSобр = S2 - S1 (13)

Поэтому для нахождения изменения энтропии реального необратимого процесса нужно разбить его на стадии, которые проводятся обратимо, вычислить для них изменения энтропии по соответствующим уравнениям для обратимых процессов, а затем просуммировать изменения энтропии DS для всех стадий.

 
 

 

DS1 = DS2 + DS3 + DS4. (14)

Изменения энтропии в процессе фазового перехода (изотермический процесс).

К изотермическим процессам фазового перехода можно отнести плавление, кипение, и др., здесь Т = const. Данный процесс проведем обратимо и рассчитаем изменение энтропии DS:

; где (15)

Q – величина теплового эффекта соответствующего фазового перехода.

Если рассматривать переход при постоянном давлении, то:

Qр = DHф.п.

, где (16)

DHф.пэнтальпия фазового перехода.

Обычно DS относят к 1 моль вещества.

Изменение энтропии при нагревании (охлаждении) вещества от Т1 до Тпри постоянном объеме.

Рассмотрим моль вещества. При постоянном объеме dQ = dQV, но

dQV = dU = СVdT, поэтому

. (17)

Интегрируем:

; . (18)

Если СV = const, то получаем для 1 моля:

. (19)

Изменение энтропии при нагревании (охлаждении) вещества от Т1 до Т2 при постоянном давлении.

Аналогично предыдущему получим:

dQ = dQр = dH, dH = СpdT;

; (20)

Если р = 1 атм и С0p = const:

(21)

Пример 2.1. Определить изменение энтропии при нагреве 1 моль Al от 25 до 6000С, если для него в этом интервале теплоёмкость зависит от температуры следующим образом:

, (Дж/моль К).

Решение. Согласно уравнению (2.7) имеем:

,

(Дж/моль К).

Изменение энтропии при изотермическом расширении (сжатии) идеального газа.

Ранее из объединенного первого и второго закона термодинамики для обратимых процессов было показано, что

, (22)

но dU = СVdT; для 1 моля идеального газа справедливо уравнение Менделеева-Клапейрона pV = RT, следовательно .

Поэтому получим:

(23)

При T = const dT = 0, следовательно, .

Проинтегрируем последнее выражение:

. (24)

Так как при постоянной температуре для идеального газа справедлив закон Бойля-Мариотта:

р1V1 = р2V2, то ,

следовательно,

. (25)

Изменение энтропии идеального газа при одновременном изменении его температуры и объема или при одновременном изменении его температуры и давления.

Проинтегрировав соотношение при СV = const, получим:

; (26)

. (27)

Из последнего соотношения, с учетом того, что для 1 моля идеального газа выполняется уравнение Майерар – СV = R, следовательно, СV = Ср – R),

проведя соответствующие преобразования и учтя, что и (объединенный газовый закон), получим:

. (28)


Сейчас читают про: