Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

III. Строение атома. Развитие периодического закона




ЗАДАЧИ

1. Вычислите молярные массы эквивалентов и эквиваленты угольной кислоты в реакциях:

а) Н2СО3 + Mg(OH)2 = MgCO3 + 2Н2О; б) 2Н2СО3 + Са(ОH)2 = Са(НСО3)2 + 2H2O;

в) Н2СО3 + 2КОН = К2СО3 + 2H2O.

2. Определите молярную массу эквивалента металла, зная, что для полного растворения 2,041 г этого металла потребовалось 5 г Н2SO4, молярная масса эквивалента которой равна 49 г/моль.

3. На нейтрализацию 1,888 г ортофосфорной кислоты израсходовано 2,161 г КОН. Вычислите молярную массу эквивалента Н3РО4 и ее основность в этой реакции. В соответствии с расчетом составьте уравнение реакции.

4. Вычислите молярную массу эквивалента металла в следующих соединениях: Mn2O7, FeSО4 , Ba(OH)2, Al2(SO4)3.

5. Вычислите эквивалент и молярную массу эквивалента гидроксида железа (III) в реакциях:

a) Fe(OH)3 + ЗНСl = FeСl3 + ЗH2O; б) Fe(OH)3 + НСl = Fe(OH)2Cl + H2O;

в) Fe(OH)3 + Н2SO4 = Fe(OH)SO4 + 2H2O.

6. Определите молярную массу эквивалента хлора в следующих соединениях: НСl, НСlO, НСlO2, НСlO3, НСlO4. Чему равен эквивалент хлора?

7. Определите эквивалент и молярную массу эквивалента марганца в следующих соединениях: МnО(OН)2, МnО2, К2МnO4 , КМnO4, МnО3, если массовая доля серы в соединении составляет 13,8 %, а молярная масса эквивалента серы равна 16,03 г/моль.

8. При сгорании 5,00 г металла образуется 9,44 г оксида металла. Определить эквивалентную массу металла.

9. Масса 1 л кислорода равна 1,4 г. Сколько литров кислорода расходуется при сгорании 21 г магния, эквивалент которого равен 1/2 моля?

10. Определить эквивалентные массы металла и серы, если 3,24 г металла образует 3,48 г оксида и 3,72 г сульфида.

11. Вычислить атомную массу двухвалентного металла и определить, какой это металл, если 8,34 г металла окисляются 0,680 л кислорода (условия нормальные).

12. 1,00 г некоторого металла соединяется с 8,89 г брома и с 1,78 г серы. Найти эквивалентные массы брома и металла, зная, что эквивалентная масса серы равна 16,0 г/моль.

13. Для растворения 16,8 г металла потребовалось 14,7 г серной кислоты. Определить эквивалентную массу металла и объем выделившегося водорода (условия нормальные).

14. При взаимодействии ортофосфорной кислоты со щелочью образовалась соль Nа2НРО4. Найти для этого случая значение эквивалентной массы ортофосфорной кислоты.

15. На нейтрализацию 2,45 г кислоты идет 2,00 г гидроксида натрия. Определить эквивалентную массу кислоты.

16. При взаимодействии 5,95 г некоторого вещества с 2,75 г хлороводорода получилось 4,40 г соли. Вычислить эквивалентные массы вещества и образовавшейся соли.

17. Фосфор образует два различных по составу хлорида. Эквивалент какого элемента сохраняется в этих соединениях постоянным: а) хлора; б) фосфора?




18. Одинаков ли эквивалент хрома в соединениях СrСl3 и Сr2(SO4)3?

Атом - наименьшая частица химического элемента - состоит из положительно заряженного ядра и отрицательно заряженных электронов. В ядро атомов всех элементов (за исключением 1Н) входят протоны и нейтроны.

Протон (р) - элементарная частица с единичным положительным зарядом и массой покоя 1,00728. Число протонов в ядре определяет заряд ядра и принадлежность атома к данному химическому элементу.

Нейтрон (n°)-элементарная частица, не обладающая зарядом, с массой покоя 1,00867. Сумма протонов и нейтронов называетсямассовым числом атома (ядра).

Атомы, обладающие одинаковым зарядом ядра, но разным числом нейтронов, называютсяизотопами данного химического элемента.

Электрон (е) - элементарная частица с единичным отрицательным зарядом.

При всех химических процессах ядра атомов элементов не изменяются. Энергия химических превращений связана только с энергией электронов.

Околоядерное пространство, где с наибольшей вероятностью может находиться электрон, называетсяатомной орбиталью (АО). Она характеризуется тремя координатами -квантовыми числами, определяющими размер (n), форму (1) и ориентацию (mе) АО в пространстве.

Главное квантовое число (n) определяет энергетический уровень электрона в атоме. Для электронов в невозбужденных атомах п принимает значения от 1 до 7 (соответственно номеру периода в ПСЭ). Совокупность электронов с одинаковым n -электронный слой:

Главное квантовое число n 1 2 3 4 5 6 7



Электронный слой К L М N О Р Q

Орбитальное квантовое число (1) указывает на различие энергий связи электронов в пределах одного энергетического уровня, определяет форму электронного облака и принимает целочисленные значения от 0 до (n -1). Для n =1 1=0; для n =2 1=0,1; для n =3 1=0,1,2; для n =4 1=0,1,2,3. Электроны данного энергетического уровня группируются в подуровни, число которых равно его n. Больше четырех подуровней не заполняется, т.к. значения 1=0,1,2,3 описывают электроны в атомах всех известных элементов.

Орбитали с 1=0,1,2,3 называют s-, p-, d-, f-орбиталями, а электроны, занимающие эти орбитали, - s-, p-, d-, f- электронами.

Магнитное квантовое число - mе характеризует магнитный момент и пространственное расположение электронного облака. Число возможных значений mе при заданном 1 равно 2∙(1+1), при этом mе изменяется от -1 до +1. Так при 1=2 mе имеет пять значений: -2, -1, 0, 1, 2 .

Спиновое квантовое число - ms характеризует движение электрона вокруг своей оси. ms имеет всего два значения: 1/2 и -1/2.

Распределение электронов в атомах по атомным орбиталям определяется принципом Паули, принципом наименьшей энергии и правилом Хунда.

Принцип Паули. В атоме не может быть двух электронов, имеющих одинаковый набор всех четырех квантовых чисел. Максимальное число электронов на уровне N=2n2. Так как каждая атомная орбиталь описывается лишь тремя квантовыми числами (n, 1, mе), то в ней может находиться не более двух электронов с противоположными спинами (1/2, -1/2).

Принцип наименьшей энергии. Последовательность размещения электронов по атомным орбиталям в невозбужденном атоме должна отвечать наибольшей связи их с ядром, т.е. электрон должен обладать наименьшей энергией. Поэтому сначала заполняются те подуровни, для которых сумма значенийn +1 является меньшей; если суммы значений n +1 равны, то сначала идет заполнение подуровня с меньшим значением n. Шкала энергий:

1s2 < 2s2 < 2p6 < 3s2 < Зр6 < 4s2 < 3d10 < 4pб < 5s2 < 4d10< 5р6 < 6s2 < 5d1 < 4f14 ≤ 5d2-10 < 6р6 < 7s2 < 6d1 ≤ 5f14 < 6d2-10 < 7p6, где s,p,d,f - энергетические подуровни, цифра впереди букв означает номер энергетического уровня, на котором находятся электроны; индекс наверху справа показывает максимальное число электронов на подуровне.

Из шкалы энергий видно, что после 3р-подуровня (n+1=3+l=4) заполняется 4s-подуровень (n+1=4+0=4), затем 3d-подуровень (n+1=3+2=5); 4р-подуровень (n+1=4+1=5) и 5s-подуровень (n+1=5+0=5).

Правило Хунда. Орбитали в пределах данного подуровня заполняются так, чтобы суммарное спиновое число электронов на подуровне было максимально. Суммарный спин спаренных электронов равен нулю (-1/2+1/2=0).

Энергетическое состояние электрона схематически можно представить в виде квантовых ячеек. Для s-электронов (1=0) - одна ячейка [ ], где может быть один [↑] или два электрона [↑↓]; для р-электронов отводится три ячейки [ ][ ][ ], где может быть от 1 до 6 электронов; для d-электронов (1=2) отводится пять ячеек [ ] [ ][ ][ ][ ], где может быть от 1 до 10 электронов; для f-электронов (1=3) отводится семь ячеек, где может быть от 1 до 14 электронов.

Строение электронных оболочек атомов тесно связано с ПСЭ Д.И. Менделеева. Если провести вертикальную черту в шкале энергий перед каждым значением главного квантового числаn, то получим максимальную емкость энергетического уровня, а также число элементов в периоде:

n =1 (I период) - емкость 2,

n =2 (II период) - 8,

n =3 (III период) - 8,

n =4 (IV период) - 18,

n =5 (V период) - 18,

n =6 (VI период)-32,

n =7 (VII период)-32.

В зависимости от того, на какой энергетический подуровень в атоме поступает последний электрон, химические элементы делятся на s-, p-,d-, f-элементы. Их положение в ПСЭ следующее:

s-элементы I, II группы, главная подгруппа -(ns1, ns2), а также (Не);

р-элементы III - VIII группы, главные подгруппы (ns2np1-6);

d-элементы I - VIII группы, побочные подгруппы [ns2(n-1)d1-10]:

f-элементы III группа, VI- VII период, побочная подгруппа [ns2(n-1)d1(n-2)1-14].

Валентные электроны у s- и p-элементов находятся на внешнем энергетическом уровне, у d-элементов - на s-подуровне внешнего энергетического уровня (ns2) и предвнешнего (n-1)d1-10 незавершенного подуровня.

Свойства элементов тесно связаны со строением их атомов. "Периодическая повторяемость свойств элементов обусловлена периодическим повторением электронных оболочек атомов" - это современная формулировкапериодического закона. Составленная Менделеевым периодическая система элементов является графическим выражением периодического закона. Атомы элементов в одной подгруппе данной группы имеют одинаковую электронную конфигурацию. Например, для главных подгрупп ПСЭ:

Номер периода I II III IV V VI VII VIII
Электронная конфигурация внешнего слоя (валентные электроны) ns1 ns2 ns2np1 ns2np2 ns2np3 ns2np4 ns2np5 ns2np6
  s-элементы р-элементы

Химические свойства элемента зависят от способности его атома терять (А°-ē®А+) или обретать (А°+ē®А-) электроны, превращаясь в положительно или отрицательно заряженные ионы. Это оценивается количественно через энергию ионизации атома и энергию сродства к электрону.

Энергия ионизации J - энергия, необходимая для отрыва электрона от нейтрального атома в его нормальном состоянии. Энергия ионизации является мерой металлических свойств элемента (в первом приближении - также восстановительных свойств). Чем меньше значенияJ, тем легче отрывается электрон внешнего уровня, тем больше металлических свойств.

Энергия сродства к электрону U - энергия процесса присоединения электрона к нейтральному атому в нормальном состоянии. Величина энергии сродства к электрону является мерой проявления элементом неметаллических и косвенно окислительных свойств.

Электроотрицательность (ЭО) - есть полусумма энергий сродства к электрону и ионизации, т. е. ЭО = 0.5∙(J+U).ЭО позволяет дать наиболее полную характеристику способности элемента проявлять металлические или неметаллические свойства.

Относительная электроотрицательность ОЭО - получается отношениемЭО элемента кЭО атома фтора, для которого значениеОЭО принято равным 4. ВеличинаОЭО позволяет оценить способность атома элемента к оттягиванию на себя электронной плотности атомов других элементов.

В ПСЭ Д.И. Менделеева в пределах главных подгрупп (s-, р-элементы) сверху вниз значенияОЭО уменьшаются, следовательно, в главных подгруппах сверху вниз увеличиваются металлические и восстановительные свойства элементов, основные свойства их гидроксидов.

В периодах ПСЭслева направо значенияОЭО увеличиваются, следовательно, здесь постепенно ослабляются металлические и нарастают окислительные свойства. Самый активный неметалл F, он же наиболее сильный окислитель. Самые активные металлы Fr, Cs, Rb являются наиболее сильными восстановителями, а их гидроксиды - самыми сильными основаниями.

Номер группы ПСЭ, в которой стоит элемент, показывает высшую степень окисления его атома в химических соединениях, его высшую валентность. Исключение составляют кислород, фтор (р-семейство); медь, серебро, золото и некоторые другие элементы d-семейства могут проявлять в соединениях валентность большую, чем номер группы.

  Номер периода
Степень окисления 1————————————— I II III IV V VI VII VIII
Высшая +1 +2 +3 +4 +5 +6 +7
Низшая -   - -   -4 -3 -2 -1

Форма и свойства соединений данного элемента зависят от степени окисления его атомов. Если элемент проявляет переменную степень окисления и образует несколько оксидов и гидроксидов, то с ее увеличением их свойства меняются от основных через амфотерные к кислотным. Например, Мn образует пять оксидов: МnО, Мn2О3, MnO2, МnО3, Mn2O7? Первые два обладают основными свойствами (Мn(OH)2, Мn(OH)3, МnО2 амфотерен (MnO(OH)2, Н2МnО3), а последние два МnО3 и Мn2О7 - кислотообразующие, являются ангидридами марганцовистой (Н2МnО4) и марганцевой кислот (HMnO4), соответственно (МnО3 и Н2МnО4 в свободном состоянии не выделены, а их существование можно предположить по образованию солей марганцовистой кислоты манганатов).





Дата добавления: 2014-02-09; просмотров: 1466; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10310 - | 7846 - или читать все...

Читайте также:

  1. D-технология построения чертежа. Типовые объемные тела: призма, цилиндр, конус, сфера, тор, клин. Построение тел выдавливанием и вращением. Разрезы, сечения
  2. I. Общие положения. 1. Правила бытового обслуживания населения в Российской Федерации разработаны на основе Закона Российской Федерации "О защите прав потребителей"
  3. I. Развитие капиталистических отношений в России на рубеже XIX-XХвв
  4. I. Развитие конкуренции, вызванное переходом от рынка продавца к рынку покупателя
  5. II закона термодинамики
  6. II. Внутриполитическое развитие
  7. II. Развитие политической системы
  8. II. Развитие сельского хозяйства пореформенной России. Два пути аграрного развития России
  9. Ii.Аспект экономический. Устойчивое развитие ресурсов
  10. II.Построение последовательных итераций, т. е. приближение к оптимальному решению
  11. III РАСШИРЕНИЕ ГРУППЫ И РАЗВИТИЕ ИНДИВИДУАЛЬНОСТИ
  12. III. Связь полезных ископаемых с геологическим строением


 

3.85.214.0 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.006 сек.