double arrow

ТЕОРЕМА О ЛИНИЯХ ЭЛИПТИЧЕСКОГО ТИПА


Теорема: Пусть задана линия элиптического типа т.е. I2>0 и пусть I1>0 следовательно уравнение (1) определяет: 1. I3<0 – эллипс; 2. I3=0 – точка; 3. I3>0 – ур-е (1) не определяет. Если I3=0 говорят, что эллипс вырождается в точку. Если I3>0 говорят, что задается мнимый эллипс. Пусть после ПП и поворота ур-е (1) принимает вид (*).

Доказательство:

1. пусть I2>0, I1>0, I3<0, тогда

а11’’x’’2+a22’’ y’’2= -I3/I2

I2=a11’’a22’’ > 0

I1= a11’’+a22’’ > 0

a11’’ > 0; a22’’ > 0

Итак, под корнями стоят положительные числа, следовательно, уравнение эллипса.

2. I3>0 в данном случае под корнем стоят отрицательные числа, следовательно уравнение не определяет действительного геометрического образа.

3. I3=0 в данном случае т(0,0) – случай вырождения эллипса.







Сейчас читают про: