Рисунок 10.3
Рисунок 10.1

Pисунок 10.2
Рассмотренный пример можно проанализировать также с помощью векторной диаграммы (рис.10.2). Для этого необходимо задаться вектором тока (напряжения) для наиболее отдаленного участка электрической цепи, а потом провести геометрические построения на основе законов Ома и Кирхгофа. Последовательность действий может быть такой:
1) задаем вектор
;
2) строим векторы
и
, учитывая, что первый совпадает по фазе с вектором
, а второй опережает вектор
на угол
;
3) вектор
находим по первому закону Кирхгофа
;
4) зная
, строим вектор
, который совпадает по фазе с
(т.е., эти векторы паралельны), и вектор
, который опережает вектор тока
по фазе на угол
;
5) по второму закону Кирхгофа:
;
.
6) поскольку сдвиг фаз между вектором
и током 
, делаем вывод, что входное сопротивление цепи имеет емкостной характер.
10.1 Соотношение между активнымии i реактивными составляющими
ребер и проводимостей участки цепи
Рассмотрим пассивный двуполюсник. Пусть комплексные амплитуды напряжения и тока на входе двуполюсника равняются:
; 
Найдем комплексное входное сопротивление:

Итак, модули
и
обратно пропорциональны, а аргументы противоположны:
;
.
Кроме показательной формы записи
и
широко используется также алгебраическая форма записи этих комплексных величин:
;
, что соответствует последовательному (R и X) и параллельному (G и B) объединению элементов двуполюсника. Установим связь между активными и реактивными составными Z и Y:

Итак,
;
. (10.1)
В свою очередь, если задано комплексное сопротивление двуполюсника Z, то комплексная проводимость

Итак,
. (10.2)
Вывод. Формулы (10.1), (10.2) показывают, что:
1) реактивное сопротивление X и реактивная проводимость B одном и том же участке электрической цепи имеют одинаковый характер;
2) каждая составная проводимостей(G и B) зависит как от активного, так и от реактивного ребер (R и X). Соответственно, каждая составная сопротивлению (R и X) есть функцией G и B;
3) активные составляющие R и G также зависят от частоты.
10.2 Энергетические соотношение в цепи синусоидного тока
Предположим, что через участок электрической цепи, который имеет сопротивление Z, проходит ток
. Спад напряжения на этом ребре равняется
.
Мгновенная мощность, которая поступает в цепь, будет представлять:

.
Эта мощность состоит из двух слагаемых: постоянной величины
и синусоидной величины, которая имеет удвоенную частоту. Среднее значение второго слагаемого за время T равняется нулю. Поэтому активная мощность, которая поступает в рассматриваемый участок цепи, будет такой:
. (10.3)
или
, (10.4)
где
- полная мощность, которая равняется произведению действующих значений напряжения и тока, которые касаются одного и тот же входа;
- коэффициент мощности, который равняется отношению активной мощности к полной.
При расчетах электрических цепей пользуются также понятием реактивной мощности, которая исчисляется по формуле
(10.5)
и является мерой потребления (или изготовления) реактивного тока.
Измеряется в вольт-амперах реактивных [Вар]. Реактивная мощность есть положительна при
(индуктивная нагрузка) и отрицательной при
(емкостная нагрузка).
Подадим мощность в комплексной форме. Для этого перейдем от мгновенных значений напряжения и тока к комплексным амплитудам:
;
.
Введем понятие комплексно-сопряженных амплитудного и действующего значений тока:
i
(рис.10.3а). Домножим комплексное действующее значение U на комплексно-сопряженное значение
:
.

а) б) в)
Величина
, которая равняется произведению комплексного действующего значения напряжения на комплексно-сопряженное действующее значение тока, носит название комплексной мощности. Комплексная мощность может быть записанна в показательной форме:
, (10.6)
где P - активная мощность; Q - реактивная мощность синусоидного тока, которая равняется мнимой части комплексной мощности. Из (10.6) получается, что модуль комплексной мощности
равняется полной мощности, а аргумент - сдвигу фаз между напряжением и током. На основе (10.6) можно построить треугольник мощностей (рис.10.3б). На комплексной плоскости значение
соответствует иiпотенузе прямоугольного треугольника, катетами которого есть P и Q.
Найдем выражение для баланса мощностей в цепи синусоидного тока. В 6.3 было найдено условие баланса мощностей в цепи постоянного тока (6.5)-(6.6), согласно с которой алгебраическая сумма мощностей источников электрической энергии
равняется сумме активных мощностей
, которые тратятся в сопротивлениях:
.
Можно показать, что в цепи синусоидного тока еще и сумма реактивных мощностей, которые поступают в цепь, равняется сумме реактивных мощностей, которые потребляются, т.е.
.
Итак, для синусоидной цепи условие баланса мощностей будет иметь вид:
;
;
. (10.7)
10.3 Условие согласования источника с нагрузкой
в цепи синусоидного тока
Пусть необходимо найти комплексное сопротивление нагрузки
так, чтобы при заданном комплексном ребре источника
обеспечивалась передача максимума активной мощности от источника к нагрузке (рис.10.3в). Активная мощность, которая потребляется нагрузками, представляет
. Учитывая, что
;
, будем иметь
.
Комплексный и сопряженный ток в нагрузке будут равняться:
;
.
Тогда
;
.
Анализируя выражение для мощности
, делаем вывод, что максимальная активная мощность в нагрузке

имеет место при условии
. Это первое условие согласования. В 6.3 было показано, что
при условии
. Тогда
.
Итак, условием передачи максимальной активной мощности к нагрузке в цепи синусоидного тока есть условие:
, или
.






