Лекция 7. Как было сказано выше, важнейшая особенность СМО как объекта изучения состоит в том, что заявки приходят в СМО на обслуживание в случайные моменты времени

Как было сказано выше, важнейшая особенность СМО как объекта изучения состоит в том, что заявки приходят в СМО на обслуживание в случайные моменты времени. Следовательно, переход СМО из одного состояния в другое есть событие случайное. Пусть - вероятность того, что СМО переходит из состояния Ei в состояние Ej за период времени, причем здесь и всюду в дальнейшем, если только не будет оговорено иное, предполагается именно такая пара состояний (Ei, Ej), которая составляет ребро в графе состояний. Введенные вероятности называются переходными вероятностями СМО.

Если все переходные вероятности не зависят от аргумента , т.е. для всех ребер графа состояний = , то СМО называется стационарной. Всюду в дальнейшем именно такие и только такие СМО будут рассматриваться. Именно для стационарных СМО слова «граф состояний» обозначают не только тот граф состояний, который был введен выше, но еще и совокупность функций ; таким образом, граф состояний (стационарной) СМО - это взвешенный граф, в котором роль графа играет прежний граф состояний, а весовой функцией является функция, сопоставляющая каждому ребру функцию .

Функции называются функциями переходных вероятностей или просто переходными вероятностями; бывает удобным в рассмотрениях следующий объект: матрица переходных вероятностей:

.

Заметим, что сумма элементов любого столбца этой матрицы (как и сумма элементов любой строки) равна единице – ведь эти элементы – вероятности событий, составляющих полную группу.

СМО называется системой без последействия, если функции не зависят от того, как именно СМО попала в состояние Ei. Именно такие СМО рассматриваются в дальнейшем. Таким образом, мы будем обсуждать только стационарные СМО без последействия.

Основные характеристики СМО. Пуассоновский поток заявок, экспоненциальное время обслуживания.

Рассмотрим теперь величину при . Если эта величина стремится к нулю при для всех i,j таких, что или , то СМО называется ординарной. По смыслу это означает, что в ординарную СМО за короткий промежуток времени не может поступить более одной заявки и из ординарной СМО за короткий промежуток времени не может выйти более одной заявки.

Мы будем в дальнейшем рассматривать только стационарные ординарные СМО без последействия.

Заметим следующее обстоятельство. Пусть - вероятность того, что СМО попадает в течение времени t в состояние Ej и - вероятность того, что в некоторый начальный момент времени СМО была в состоянии Ej. Если обозначить и , то, согласно формуле полной вероятности и правилу умножения матриц, окажется выполненным равенство:

.

Промежуток времени между последовательно поступающими заявками в СМО есть величина случайная. Если функция распределения этой случайной величины имеет вид

при некотором , то поток заявок называется пуассоновским.

Время, в течение которого очередная заявка в СМО находится на обслуживании, также является величиной случайной. Если функция распределения этой случайной величины имеет вид

при некотором , то время обслуживания называется экспоненциальным.

Прежде, чем анализировать особенности СМО с пуассоновским потоком заявок и экспоненциальным временем обслуживания, приведем некоторые стандартные конструкции.

Положим и введем матрицу . Число называется интенсивностью перехода СМО из состояния в состояние . Когда , число () называют интенсивностью выхода СМО из состояния . Полезно заметить, учитывая, что при , а при , справедливы неравенства:

при , а при .

Матрица называется матрицей интенсивностей СМО.

Можно доказать, что вероятности , введенные в этой лекции, удовлетворяют системе линейных дифференциальных уравнений

(7.1)

при начальных условиях (здесь ).

Из ординарности СМО следует, что в ее матрице интенсивностей отличными от нуля могут быть элементы только на главной диагонали и на двух ближайших к ней и параллельных ей линиях:

.

Это обстоятельство делает систему уравнений (7.1) более конкретной. В частном случае, например, при пуассоновском потоке входных заявок (можно проверить, что в этом случае СМО будет стационарной, ординарной и без последействия) и полном отсутствии обслуживания (это значит, что заявки только поступают в СМО, но не покидают СМО) матрица A принимает вид

,

после чего система (7.1) решается рекуррентно стандартными средствами. В результате получается ответ:

.

Это означает, что в СМО с пуассоновским потоком заявок и любым режимом обслуживания вероятность поступления k заявок

за время t равна .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: