Балки рассчитывают на прочность по наибольшим нормальным напряжениям, возникающим в их поперечных сечениях. При поперечном изгибе балок наряду с нормальными возникают и касательные напряжения, обусловленные наличием поперечной силы, но они в подавляющем большинстве случаев невелики и при расчетах на прочность не учитываются.
Прочность балки обеспечена, если наибольшие по абсолютному значению нормальные напряжения, возникающие в опасном сечении, не превышают допустимых. Для балки, поперечные размеры которой по всей длине постоянны, опасное сечение то, в котором возникает наибольший по модулю изгибающий момент. Наибольшие нормальные напряжения возникают в точках опасного поперечного сечения, максимально удаленных от нейтральной оси. Эти точки принято называть опасными. Значения максимальных напряжений в опасных точках найдем по формуле:
,
где
и
- расстояния от нейтральной оси до наиболее удаленных точек соответственно в растянутой и сжатой зонах сечения.
|
| Рисунок 1 |
Если материал балки хрупкий, например закаленная сталь, чугун, текстолит и др., то расчет на прочность при изгибе проводят по напряжениям растяжения и сжатия. У хрупких материалов предел прочности при сжатии выше предела прочности при растяжении
. Следовательно, поперечным сечениям балок из хрупких материалов целесообразно придавать асимметричную форму относительно нейтральной оси (рис. 1) и располагать балку так, чтобы большая часть материала находилась в растянутой зоне.
Таким образом, при расчетах балок из хрупкого материала используются два условия прочности:
для растянутой зоны
;
для сжатой зоны
.
Причем наилучшее использование материала происходит при форме сечения, удовлетворяющей условию
.
|
| Рисунок 2 |
При расчете балок из пластичных материалов, например коуглеродистой стали или цветных металлов, допускаемые напряжения растяжения и сжатия одинаковы:
. Поэтому для таких балок целесообразными являются сечения, симметричные относительно нейтральной оси (рис. 2), так как в этом случае наиболее удаленные точки в растянутой и сжатой зонах сечения располагаются на одинаковом расстоянии y = h/2 от нейтральной оси. И, следовательно,
.
Разделим числитель и знаменатель правой части этого равенства на h/2:
.
Величина
, выражаемая в
или
, называется моментом сопротивления сечения при изгибе.
Для прямоугольного сечения (рис. 2), размеры которого
, момент сопротивления
.
Для круглого сечения
.
Наиболее экономичными при изгибе являются такие формы сечения, при которых материал бруса расположен как можно дальше от нейтральной оси. У таких брусьев при наименьшей затрате материалов получается наибольший момент сопротивления
. Поэтому и возникли профили стандартного проката (рис. 2), все необходимые геометрические характеристики которых содержатся в ГОСТ 8239-72 "Сталь горячекатаная. Балки двутавровые", ГОСТ 8240-72 "Швеллеры".
Таким образом, наибольшие напряжения растяжения или сжатия в симметричном относительно нейтральной оси сечения находят по формуле
и условие прочности балки из пластичного материала имеет вид
, исходя из которого выполняют три вида расчетов.
Проектный расчет. Приняв
, по изгибающему моменту
в опасном сечении находят требуемое значение момента сопротивления:
. Затем, исходя из принятой для балки формы поперечного сечения, находят его размеры.
Расчет допускаемой нагрузки выполняется при
по формуле
. Затем, исходя из схемы нагружения балки, находят допускаемое значение нагрузки.
Проверочный расчет. Определив максимальный изгибающий момент и момент сопротивления сечения, находят по формуле значение
и сравнивают его с
.
Аналогично выполняют расчеты балок из условия прочности для растянутой зоны и условия прочности для сжатой зоны.