Свойства дисперсии случайной величины

  1. Дисперсия постоянной величины равна нулю: .

. ■

2. Постоянный множитель можно выносить за знак дисперсии, возведя его при этом в квадрат: .

□ Учитывая свойство 2 математического ожидания, получим . ■

3. Дисперсия случайной величины равна разности между математическим ожиданием квадрата случайной величины и квадратом ее математического ожидания: (3.16) или где .

□ Пусть М(Х) = а. Тогда D(Х) = М(Х - а)2 = М(Х2 - 2аХ + а2). Учитывая, что а - величина постоянная, неслучайная, найдем

D(Х) = М(Х)2 - 2аМ(Х) + а2 = М(Х2) - 2а·а + а2 = M(X2) - a2.

Это свойство часто используют при вычислении дисперсии. Вычисление по формуле (3.16) дает, например, упрощение расчетов по сравнению с основной формулой (3.11), если значения xi случайной величины - целые, а математическое ожидание, а значит, и разности (xi - а) - нецелые числа.

4. Дисперсия алгебраической суммы конечного числа независимых случайных величин равна сумме их дисперсий: .

□ По свойству 3: . Обозначая , и учитывая, что для независимых случайных величин М(ХУ)=М(Х)М(У), получим

.■

Обращаем внимание на то, что дисперсия как суммы, так и разности независимых случайных величин Х и У равна сумме их дисперсий, т.е. .

Если использовать механическую интерпретацию распределения случайной величины, то ее дисперсия представляет собой момент инерции распределения масс относительно центра масс (математического ожидания).

3амечание. Обратим внимание на интерпретацию математического ожидания и дисперсии в финансовом анализе. Пусть, например, известно распределение доходности Х некоторого актива (например, акции), т.е. известны значения доходности xi и соответствующие их вероятности pi за рассматриваемый промежуток времени. Тогда, очевидно, математическое ожидание М(Х) выражает среднюю (прогнозную) доходность актива, а дисперсия D(X) или среднее квадратическое отклонение - меру отклонения, колеблемости доходности от ожидаемого среднего значения, т.е. риск данного актива.

Математическое ожидание, дисперсия, среднее квадратическое отклонение и другие числа, призванные в сжатой форме выразить наиболее существенные черты распределения, называются числовыми характеристиками случайной величины.

Обращаем внимание на то, что сама величина Х - случайная, а ее числовые характеристики являются величинами неслучайными, постоянными.

16. Функция распределения случайной величины, ее определе­ние, свойства и график.

Определение. Функцией распределения случайной величины Х называется функция F(х), выражающая для каждого х вероятность того, что случайная величина Х примет значение, меньшее х: .

Функцию F(x) иногда называют интегральной функцией распределения или интегральным законом распределения.

Геометрически функция распределения интерпретируется как вероятность того, что случайная точка Х попадет левее за данной точки х.

Функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины и равны вероятностям этих значений. Сумма всех скачков функции F(х) равна 1.




double arrow
Сейчас читают про: