Фундаментальные физические поля

Поле — одна из форм существования материи и, пожалуй, самая важная. Понятие «поле» отражает тот факт, что электрические и магнитные силы действуют с конечной скоростью на расстоянии, взаимно и непрерывно порождая друг друга. Поле излучается, распространяется с конечной скоростью в пространстве, взаимодействует с веществом. Фарадей сформулировал идеи поля как новой формы материи, а записи вложил в запечатанный конверт, завещав вскрыть его после своей смерти (этот конверт был обнаружен только в 1938 г.). Фарадей использовал (1840) идею всеобщего сохранения и превращения энергии, хотя сам закон еще не был открыт.

В лекциях (1845) Фарадей говорил не только об эквивалентных превращениях энергии из одной формы в другую, но и о том, что он давно пытался «открыть прямую связь между светом и электричеством» и что «удалось намагнитить и наэлектризовать луч света и осветить магнитную силовую линию». Ему принадлежит методика изучения пространства вокруг заряженного тела с помощью пробных тел, введение для изображения поля силовых линий. Он описал свои опыты по вращению плоскости поляризации света магнитным полем. Изучение взаимосвязи электрических и магнитных свойств веществ привело Фарадея не только к открытию пара- и диамагнетизма, но и к установлению фундаментальной идеи — идеи поля. Он писал (1852): «Среда или пространство, его окружающие, играют столь же существенную роль, как и сам магнит, будучи частью настоящей и полной магнитной системы».

Фарадей показал, что электродвижущая сила индукции Е возникает при изменении магнитного потока Ф (размыкании, замыкании, изменении тока в проводниках, приближении или удалении магнита и пр.). Максвелл выразил этот факт равенством: Е = -д Ф /дt. По Фарадею, способность индуцировать токи проявляется по окружности вокруг магнитной равнодействующей. Согласно Максвеллу, переменное магнитное поле окружено вихревым электрическим полем, а знак минус связан с правилом Ленца: возникает индукционный ток такого направления, чтобы препятствовать изменению, порождающему его. Обозначение rot — от англ. rotor — вихрь. В 1846 г. Ф. Нейман нашел, что на создание индукционного тока надо затратить определенное количество энергии.

В целом система уравнений, записанная Максвеллом в векторной форме, имеет компактный вид:

Входящие в эти уравнения векторы электрической и магнитной индукции (D и В) и векторы напряженности электрического и магнитного полей (Е и Н) связаны указанными простыми соотношениями с диэлектрической постоянной е и магнитной проницаемостью среды μ. Использование этой операции означает, что вектор напряженности магнитного поля вращается вокруг вектора тока плотности j.

Согласно уравнению (1), любой ток вызывает возникновение магнитного поля в окружающем пространстве, постоянный ток — постоянное магнитное поле. Такое поле не может вызвать в «следующих» областях электрическое поле, так как, по уравнению (2), только изменяющееся магнитное поле порождает ток. Вокруг переменного тока создается и переменное магнитное поле, способное создать в «следующем» элементе пространства электрическое поле волны, волны незатухающей, — энергия магнитного поля в пустоте полностью переходит в энергию электрического, и наоборот. Поскольку свет распространяется в виде поперечных волн, можно сделать два вывода: свет — электромагнитное возмущение; электромагнитное поле распространяется в пространстве в виде поперечных волн со скоростью с = 3 • 108 м/с, зависящей от свойств среды, и поэтому невозможно «мгновенное дальнодействие». Итак, в световых волнах колебания совершают напряженности электрического и магнитного полей, а носителем волны служит само пространство, которое находится в состоянии напряжения. А оно за счет тока смещения создаст новое магнитное поле и так до бесконечности.

Смысл уравнений (3) и (4) понятен — (3) описывает электростатическую теорему Гаусса и обобщает закон Кулона, (4) отражает факт отсутствия магнитных зарядов. Дивергенция (от лат. divergere — обнаруживать расхождение) есть мера источника. Если в стекле, например, не рождаются световые лучи, а только проходят сквозь него, divD = 0. Солнце как источник света и теплоты обладает положительной дивергенцией, а темнота — отрицательной. Поэтому силовые линии электрического поля кончаются на зарядах, плотность которых р, а магнитного — замкнуты сами на себя и нигде не кончаются.

Система взглядов, которая легла в основу уравнений Максвелла, получила название максвелловской теории электромагнитного поля. Хотя эти уравнения имеют простой вид, но чем больше Максвелл и его последователи работали над ними, тем более глубокий смысл открывался им. Г. Герц, опыты которого явились первым прямым доказательством верности теории электромагнитного поля Фарадея—Максвелла, писал о неисчерпаемости уравнений Максвелла: «Нельзя изучать эту удивительную теорию, не испытывая по временам такого чувства, будто математические формулы живут собственной жизнью, обладают собственным разумом — кажется, что эти формулы умнее нас, умнее даже самого автора, как будто они дают нам больше, чем в свое время было в них заложено».

Процесс распространения поля будет продолжаться до бесконечности в виде незатухающей волны — энергия магнитного поля в пустоте полностью переходит в энергию электрического, и наоборот. Среди постоянных, входящих в уравнения, была константа с; Максвелл нашел, что ее значение равнялось точно значению скорости света. На это совпадение нельзя было не обратить внимания. Итак, в световых волнах колебания совершают напряженности электрического и магнитного полей, а носителем волны служит само пространство, которое находится в состоянии напряжения.

Световая волна — это волна электромагнитная, «бегущая в пространстве и отделенная от испустивших ее зарядов», как выразился Вайскопф. Открытие Максвелла он сравнил по важности с открытием закона тяготения Ньютона. Ньютон связал движение планет с тяготением на Земле и открыл фундаментальные законы, управляющие механическим движением масс под действием сил. Максвелл связал оптику с электричеством и вывел фундаментальные законы (уравнения Максвелла), управляющие поведением электрических и магнитных полей и их взаимодействием с зарядами и магнитами. Труды Ньютона привели к введению понятия всеобщего закона тяготения, труды Максвелла — понятия электромагнитного поля и к установлению законов его распространения. Если электромагнитное поле может существовать независимо от материального носителя, то дальнодействие должно уступить место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Идеи тока смещения (1861), электромагнитных волн и электромагнитной природы света (1865) были настолько смелыми и необычными, что даже следующее поколение физиков не сразу приняло теорию Максвелла. В 1888 г. Г. Герц открыл электромагнитные волны, но такого активного противника теории Максвелла, как У. Томсон (Кельвин), смогли убедить лишь эксперименты П.Н.Лебедева, открывшего в 1889 г. существование светового давления.

В середине XIX в. Максвелл объединил электричество и магнетизм в единой теории поля. Электрический заряд связан с элементарными частицами, из которых самые известные — электрон и протон — имеют одинаковый по величине заряд е, это универсальная постоянная природы. В СИ = 1,6 • 10-19 Кл. Хотя магнитных зарядов пока не обнаружено, в теории они уже возникают. По мнению физика Дирака, величина магнитных зарядов должна быть кратной заряду электрона

Дальнейшие исследования в области электромагнитного поля привели к противоречиям с представлениями классической механики, которые пытался устранить путем математического согласования теорий голландский физик X.А. Лоренц. Он ввел преобразования координат инерциальных систем, которые в отличие от классических преобразований Галилея содержали константу — скорость света, которая и осуществляла связь с теорией поля. Изменились масштабы времени и длин при скоростях, близких к скорости света. Физический смысл этих преобразований Лоренца был объяснен только А. Эйнштейном в 1905 г. в его работе «К электродинамике движущихся тел», составившей основу специальной теории относительности (СТО), или релятивистской механики.

Естествознание не только выделяет типы материальных объектов во Вселенной, но и раскрывает связи между ними. Связь между объектами в целостной системе более упорядочена, более устойчива, чем связь каждого из элементов с элементами из внешней среды. Чтобы разрушить систему, выделить из системы тот или иной элемент, нужно приложить к ней определенную энергию. Эта энергия имеет разную величину и зависит от типа взаимодействия между элементами системы. В мегамире эти взаимодействия обеспечиваются гравитацией, в макромире к гравитации добавляется электромагнитное взаимодействие, и оно становится основным, как более сильное. В микромире на размерах атома проявляется еще более сильное ядерное взаимодействие, обеспечивающее целостность атомных ядер. При переходе к элементарным частицам энергия внутренних связей знаем, что природные вещества — это химические соединения элементов, построенных из атомов и собранных в Периодическую таблицу. Некоторое время считали, что атомы и есть элементарные кирпичики мироздания, но потом установили, что атом представляет собой «целую Вселенную» и состоит из взаимодействующих друг с другом еще более фундаментальных частиц: протонов, электронов, нейтронов, мезонов и т.д. Число частиц, претендующих на элементарность, увеличивается, но так ли уж они элементарны?

Механика Ньютона была признана, но происхождение сил, которые вызывают ускорения, в ней не обсуждались. Силы гравитации действуют через пустоту, они дальнодействующие, тогда как силы электромагнитные — через среду. В настоящее время все взаимодействия в природе сводят к четырем типам: гравитационные, электромагнитные, сильные ядерные и слабые ядерные.

Гравитация (от лат. gravitas — тяжесть) — исторически первое исследованное взаимодействие. Вслед за Аристотелем считали, что все тела стремятся в «своему месту» (тяжелые — вниз, к Земле, легкие — вверх). Физике XVII—XVIII вв. были известны только гравитационные взаимодействия. По Ньютону, две точечные массы притягивают друг друга с силой, направленной вдоль соединяющей их прямой: Знак минус указывает на то, что мы имеем дело с притяжением, r — расстояние между телами (считается, что размер тел намного меньше r), т1 и т2 массы тел. Величина G — универсальная постоянная, определяющая значение гравитационных сил. Если тела массой по 1 кг находятся на расстоянии 1 м друг от друга, то сила притяжения между ними равна 6,67 • 10-11 н. Гравитация универсальна, все тела подвержены ей и даже сама частица — источник гравитации. Если бы величина G была больше, то увеличилась бы и сила, но G очень мала, и гравитационное взаимодействие в мире субатомных частиц несущественно, а между макроскопическими телами еле заметно. Кэвендиш сумел измерить величину G, пользуясь крутильными весами. Универсальность постоянной G означает, что в любом месте Вселенной и в любой момент времени сила притяжения между телами массой по 1 кг, разделенными расстоянием 1 м, будет иметь то же значение. Поэтому можно говорить, что величина G определяет структуру гравитирующих систем. Гравитация, или тяготение, не очень существенна при взаимодействии между малыми частицами, но она удерживает планеты, всю Солнечную систему и галактики. Мы постоянно ощущаем гравитацию в нашей жизни. Закон утвердил дальнодействующую природу силы тяготения и основное свойство гравитационного взаимодействия — его универсальность.

Теория тяготения Эйнштейна (ОТО) дает отличающиеся результаты от закона Ньютона в сильных гравитационных полях, в слабых — обе теории совпадают. Согласно ОТО, гравитацияэто проявление искривления пространства-времени. Тела движутся по искривленным траекториям не потому, что на них действует гравитация, а потому, что они движутся в искривленном пространстве-времени. Движутся «кратчайшим путем, и тяготение — это геометрия». Влияние искривления пространства-времени можно обнаружить не только вблизи коллапсирующих объектов типа нейтронных звезд или черных дыр. Таковы, например, прецессия орбиты Меркурия или замедление времени на поверхности Земли (см. рис. 2.3, в). Эйнштейн показал, что гравитацию можно описывать как эквивалент ускоренного движения.

Чтобы избежать сжатия Вселенной под влиянием самогравитации и обеспечить ее стационарность, он ввел возможный источник гравитации с необычными свойствами, ведущий к «расталкиванию» материи, а не к концентрации ее, а сила отталкивания возрастает с увеличением расстояния. Но эти свойства могут проявляться только в очень больших масштабах Вселенной. Сила отталкивания неимоверно мала и не зависит от отталкивающей массы; ее представляют в виде где т — масса отталкиваемого объекта; r — его расстояние от отталкивающего тела; L — константа. В настоящее время устанавливают верхний предел для L = 10-53 м-2, т.е. для двух тел массой по 1 кг, находящихся на расстоянии 1 м, сила притяжения превышает космическое отталкивание, по крайней мере в 1025 раз. Если две галактики с массами 1041 кг находятся на расстоянии 10 млн св. лет (около 1022 м), то для них силы притяжения примерно уравновешивались бы силами отталкивания, если величина L действительно близка к указанному верхнему пределу. Эта величина не измерена до сих пор, хотя и важна для крупномасштабной структуры Вселенной как фундаментальная.

Электромагнитное взаимодействие, обусловленное электрическими и магнитными зарядами, переносится фотонами. Силы взаимодействия между зарядами сложным образом зависят от положения и движения зарядов. Если два заряда q 1и q2 неподвижны и сосредоточены в точках на расстоянии r, то взаимодействие между ними электрическое и определяется законом Кулона: В зависимости от знаков зарядов q1 и q2 сила электрического взаимодействия, направленная вдоль прямой, соединяющей заряды, будет силой притяжения или отталкивания. Здесь через обозначена постоянная, определяющая интенсивность электростатического взаимодействия, ее значение равно 8,85 • 10-12 Ф/м. Так, два заряда по 1 Кл, разнесенные на 1 м, будут испытывать силу 8,99 109 Н. Электрический заряд всегда связан с элементарными частицами. Численная величина заряда наиболее известных среди них — протона и электрона — одинакова: это универсальная постоянная е = 1,6 10-19 Кл. Заряд протона считается положительным, электрона — отрицательным.

Магнитные силы порождаются электрическими токами — движением электрических зарядов. Существуют попытки объединить теории с учетом симметрий, в которых предсказывается существование магнитных зарядов (магнитных монополей), но они пока не обнаружены. Поэтому величина е определяет и интенсивность магнитного взаимодействия. Если электрические заряды движутся с ускорением, то они излучают — отдают энергию в виде света, радиоволн или рентгеновских лучей в зависимости от диапазона частот. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу, хотя и проявляются подчас в сложных формах. Электромагнитные взаимодействия определяют структуру и поведение атомов, удерживают атомы от распада, отвечают за связи между молекулами, т. е. за химические и биологические явления.

Гравитация и электромагнетизм — дальнодействующие силы, распространяющиеся на всю Вселенную.

Сильные и слабые ядерные взаимодействия — короткодействующие и проявляются только в пределах размеров атомного ядра, т. е. в областях порядка 10-14 м.

Слабое ядерное взаимодействие ответственно за многие процессы, обуславливающие некоторые виды ядерных распадов элементарных частиц (например, (3-распад — превращение нейтронов в протоны) с радиусом действия почти точечным: около 10-18 м. Оно сильнее сказывается на превращениях частиц, чем на их движении, поэтому его эффективность определяют постоянной, связанной со скоростью распада, — универсальной постоянной связи g(W), определяющей скорость протекании процессов типа распада нейтрона. Слабое ядерное взаимодействие осуществляют так называемые слабые бозоны, и одни субатомные частицы могут превращаться в другие. Открытие нестабильных субъядерных частиц обнаружило, что слабое взаимодействие вызывает множество превращений. Сверхновые звезды — один из немногих случаев наблюдаемого слабого взаимодействия.

Сильное ядерное взаимодействие препятствует распаду атомных ядер, и не будь его, ядра распались бы из-за сил электрического отталкивания протонов. В ряде случаев для его характеристики вводят величину g(S), аналогичную электрическому заряду, но намного большую. Сильное взаимодействие, осуществляемое глюонами, резко спадает до нуля за пределами области радиусом около 10-15 м. Оно связывает между собой кварки, входящие в состав протонов, нейтронов и других подобных частиц, именуемых адронами. Говорят, что взаимодействие протонов и нейтронов есть отражение их внутренних взаимодействий, но пока картина этих глубинных явлений скрыта от нас. С ним связаны энергия, выделяемая Солнцем и звездами, превращения в ядерных реакторах и освобождение энергии. Перечисленные типы взаимодействий имеют, видимо, разную природу. К настоящему времени не ясно, исчерпываются ли ими все взаимодействия в природе. Самое сильное — короткодействующее сильное взаимодействие, электромагнитное слабее его на 2 порядка, слабое — на 14 порядков, а гравитационное меньше сильного на 39 порядков. В соответствии с величиной сил взаимодействия они происходят за разное время. Сильные ядерные взаимодействия возникают при столкновении частиц с околосветовыми скоростями. Время реакций, определяемое делением радиуса действия сил на скорость света, дает величину порядка 10-23 с. Процессы слабого взаимодействия происходят за 10-9 с, а гравитационные — порядка 1016 с, или 300 млн лет.

«Закон обратных квадратов», по которому действуют друг на друга точечные гравитационные массы или электрические заряды, следует, как показал П.Эренфест, из трехмерности пространства (1917). В пространстве п измерений точечные частицы взаимодействовали бы по закону обратной степени (n - 1). Для п = 3 справедлив закон обратных квадратов, так как 3 - 1 = 2. А при и = 4, что соответствует закону обратных кубов, планеты двигались бы по спиралям и быстро упали на Солнце. В атомах при числе измерений больше трех также не существовало бы устойчивых орбит, т. е. не было бы химических процессов и жизни. На связь трехмерности пространства с законом тяготения указывал еще и Кант.

Кроме того, можно показать, что распространение волн в чистом виде невозможно в пространстве с четным числом измерений — появляются искажения, нарушающие переносимую волной структуру (информацию). Пример тому — распространение волны по резиновому покрытию (по поверхности размерности п = 2). В 1955 г. математик Г. Дж. Уитроу заключил, что поскольку живым организмам необходимы передача и обработка информации, то высшие формы жизни не могут существовать в пространствах четной размерности. Этот вывод относится к известным нам формам жизни и законам природы и не исключает существования иных миров, иной природы.

От Ньютона и П.Лапласа сохранилось рассмотрение механики как универсальной физической теории. В XIX в. это место заняла механическая картина мира, включающая механику, термодинамику и кинетическую теорию материи, упругую теорию света и электромагнетизм. Открытие электрона стимулировало пересмотр представлений. В конце века Х.Лоренц построил свою электронную теорию для охвата всех явлений природы, но этого не достиг. Проблемы, связанные с дискретностью заряда и непрерывностью поля, и проблемы в теории излучения («ультрафиолетовая катастрофа») привели к созданию квантово-полевой картины мира и квантовой механики. После создания СТО ожидалось, что всеобщий охват мира природы способна дать электромагнитная картина мира, соединявшая теорию относительности, теорию Максвелла и механику, но и эта иллюзия вскоре была развеяна.

Многие теоретики пытались едиными уравнениями охватить гравитацию и электромагнетизм. Под влиянием Эйнштейна, который ввел четырехмерное пространство-время, строились многомерные теории поля в попытках свести явления к геометрическим свойствам пространства.

Объединение осуществилось на основе установленной независимости скорости света для разных наблюдателей, движущихся в пустом пространстве при отсутствии внешних сил. Эйнштейн изобразил мировую линию объекта на плоскости, где пространственная ось направлена горизонтально, а временная — вертикально. Тогда вертикальная прямая — это мировая линия объекта, который покоится в данной системе отсчета, а наклонная — объекта, движущегося с постоянной скоростью. Кривая мировая линия соответствует движению объекта с ускорением. Любая точка на этой плоскости отвечает положению в данном месте в данное время и называется событием. Гравитация при этом уже не сила, действующая на пассивном фоне пространства и времени, а представляет собой искажение самого пространства-времени. Ведь гравитационное поле — это «кривизна» пространства-времени.

Для установления связи между системами отсчета, движущимися относительно друг друга, нужно измерять пространственные интервалы в тех же единицах, что и временные. Множителем для такого пересчета может служить скорость света, связывающая расстояние с временем, за которое свет может это расстояние преодолеть. В такой системе 1 м равен 3,33 не (1 не = 10-9 с). Тогда мировая линия фотона пройдет под углом 45°, а любого материального объекта — под меньшим углом (так как скорость у него всегда меньше скорости света). Поскольку пространственная ось соответствует трем декартовым осям, то мировые линии материальных тел будут находиться внутри конуса, описываемого мировой линией фотона. Результаты наблюдений солнечного затмения 1919 г. принесли всемирную славу Эйнштейну. Смещения звезд, которые можно увидеть в окрестности Солнца только во время затмения, совпали с предсказаниями теории тяготения Эйнштейна. Так что его геометрический подход к построению теории тяготения был подтвержден впечатляющими экспериментами.

В том же 1919 г., когда появилась ОТО, приват-доцент Кенигсбергского университета Т. Калуца отправил Эйнштейну свою работу, где предлагал пятое измерение. Пытаясь найти первооснову всех взаимодействий (тогда было известно два — тяготение и электромагнетизм), Калуца показал, что они могут быть выведены единообразно в пятимерной ОТО. Для успеха объединения не имели значения размеры пятого измерения и, может быть, они столь малы, что их не удается обнаружить. Только после двухгодичной переписки с Эйнштейном статью опубликовали. Шведский физик О. Клейн предложил модификацию основного уравнения квантовой механики с пятью переменными вместо четырех (1926). Неощущаемые нами измерения пространства он «свернул» до очень малых размеров (приведя пример небрежно брошенного поливального шланга, который издалека кажется извилистой линией, а вблизи каждая его точка оказывается окружностью). Размеры этих своеобразных петелек 1020 раз меньше размера атомного ядра. Поэтому пятое измерение и не наблюдаемо, но возможно.

В развитие пятимерной теории внесли свой вклад советские ученые Г.А. Мандель и В.А. Фок. Они показали, что траектория заряженной частицы в пятимерном пространстве может быть строго описана как геодезическая линия (от греч. geodaisia — землеразделение), или кратчайший путь между двумя точками на поверхности, т. е. пятое измерение может быть физически реальным. Оно не обнаружено из-за соотношения неопределенности Гейзенберга, которое каждую частицу представляет в виде волнового пакета, занимающего в пространстве область, размер которой зависит от энергии частицы (чем больше энергия, тем меньше объем области). Если пятое измерение свернуто в малую окружность, то, чтобы ее обнаружить, освещающие ее частицы должны обладать большой энергией. Ускорители дают пучки частиц, обеспечивающие разрешающую способность 10-18 м. Поэтому, если окружность в пятом измерении имеет меньшие размеры, ее пока нельзя обнаружить.

Советский профессор Ю.Б. Румер в своей пятимерной теории показал, что пятому измерению можно придать смысл действия. Тут же появились попытки представить наглядно это пятимерное пространство, как ранее четырехмерное пространство-время, введенное Эйнштейном. Одна из таких попыток — гипотеза о существовании «параллельных» миров. Четырехмерное изображение мяча представить было несложно: это совокупность его изображений в каждой временной точке — «труба» из мячей, которая тянется из прошлого в будущее. А пятимерный мяч — это уже поле, плоскость из абсолютно одинаковых миров. Во всех мирах, имеющих от трех до пяти измерений, даже одна причина, хотя бы случайная, может породить несколько следствий. Шестимерная Вселенная, построенная выдающимся советским авиаконструктором Л.Р. Бартини, включает три пространственных измерения и три временных. У Бартини длина времени — длительность, ширина — количество вариантов, высота — скорость времени в каждом из возможных миров.

Теория квантовой гравитации должна была соединить ОТО и квантовую механику. Во Вселенной, подчиненной законам квантовой гравитации, кривизна пространства-времени и его структура должны флуктуировать, квантовый мир никогда не находится в покое. И понятия прошлого и будущего, последовательность событий в таком мире тоже должны быть иными. Эти изменения пока не обнаружены, так как квантовые эффекты проявляются в исключительно малых масштабах.

В 50-е гг. XX в. Р.Фейнман, Ю.Швингер и С.Томогава независимо друг от друга создали квантовую электродинамику, связав квантовую механику с релятивистскими представлениями и объяснив многие эффекты, полученные при исследовании атомов и их излучений. Затем была разработана теория слабых взаимодействий, и показано, что электромагнетизм можно объединить математически только со слабым взаимодействием. Один из ее авторов, пакистанский физик-теоретик А. Салам, писал: «Секрет достижения Эйнштейна состоит в том, что он осознал фундаментальное значение заряда в гравитационном взаимодействии. И пока мы не поймем природу зарядов в электромагнитных, слабых и сильных взаимодействиях так же глубоко, как это сделал Эйнштейн для тяготения, надежды на успех в окончательной унификации мало... Мы хотели бы не только продолжить попытки Эйнштейна, в которых ему не удалось преуспеть, но и включить в эту программу остальные заряды».

Возродился интерес к многомерным теориям, и вновь стали обращаться к работам Эйнштейна, Бергмана, Калуцы, Румера, Йордана. В работах советских физиков (Л.Д.Ландау, И.Я.Померанчук, Е.С.Фрадкин) показано, что при расстояниях 10-33 см в квантовой электродинамике появляются неустранимые противоречия (расходимости, аномалии, все заряды обращаются в нуль). Многие ученые работали над идеями создания единой теории. С. Вайнберг, А. Салам и Ш. Глэшоу показали, что электромагнетизм и слабое ядерное взаимодействие можно считать проявлением некоей «электрослабой» силы и что истинные носители сильного взаимодействия — кварки. Созданная теория — квантовая хромодинамика — построила протоны и нейтроны из кварков и сформировала так называемую стандартную модель элементарных частиц.

Еще Планк отметил фундаментальную роль величин, составленных из трех констант, определяющих основные теории, — СТО (скорости света с), квантовую механику (постоянной Планка h) и теорию тяготения Ньютона (гравитационной постоянной G). Из их комбинации можно получить три величины (планковские) с

размерностями массы, времени и длины

= 5 • 1093 г/см3. Планковская длина совпадает с критическим расстоянием, на котором теряет смысл квантовая электродинамика. Сейчас определена геометрия лишь на расстояниях более 10-16 см, которые больше планковских на 17 порядков величины! Объединение взаимодействий нужно для устранения в теории расхо-димостей и аномалий — проблему составляло определение частиц как точек и искажение ими пространства-времени. И его стали искать с помощью идей более высоких симметрий. Эти идеи получили «второе дыхание» в 80-е гг. XX в. в теориях великого объединения ТВО и супергравитации. ТВО — это теория, позволяющая объединить все взаимодействия, кроме гравитационного. Если удастся объединить с ней и гравитационное взаимодействие, то получится Теория Всего Сущего (ТВС). Тогда мир будет описываться единообразно. Поиск такой «суперсилы» продолжается.

Теории супергравитациииспользуют многомерные построения, свойственные геометрическому подходу при построении ОТО. Можно построить мир из разного числа измерений (используют 11- и 26-мерные модели), но 11-мерные наиболее интересны и красивы с математической точки зрения: 7 — минимальное число скрытых измерений пространства-времени, которые допускают включение в теорию трех негравитационных сил, а 4 — обычные измерения пространства-времени. Четыре известных взаимодействия рассматривают как геометрические конструкции, имеющие более пяти измерений.

Теория суперструнразрабатывается с середины 80-х гг. XX в. наряду с супергравитацией. Эту теорию начали развивать английский ученый М. Грин и американский ученый Дж. Шварц. Они сопоставили частицам вместо точки одномерную струну, помещенную в многомерное пространство. Эта теория, заменив точечные частицы крошечными энергетическими петлями, устранила абсурдности, возникающие при расчетах. Космические струны — это экзотические невидимые образования, порожденные теорией элементарных частиц. В этой теории отражена иерархичность понимания мира — возможность того, что не существует окончательного основания для физической реальности, а есть только последовательность все меньших и меньших частиц. Существуют и очень массивные частицы, и около тысячи частиц без массы. У каждой струны, имеющей планковский размер (10-33 см), при этом может быть бесконечно много типов (или мод) колебаний. Как вибрация струн скрипки порождает различные звуки, так и вибрация этих струн может генерировать все силы и частицы. Суперструны позволяют понять киральность (от греч. cheir — рука), тогда как супергравитация не может объяснить разницы между левым и правым — в ней поровну частиц каждой направленности. Теория суперструн, как и супергравитации, связана не с опытом, а с более характерным для математики устранением аномалий и расходимостей.

Американский физик Э. Виттен заключил, что теория суперструн — основная надежда на будущее физики, она не только учитывает возможность силы тяжести, но и утверждает ее существование, и тяжесть — есть следствие теории суперструн. Его технология, заимствованная из топологии и теории квантового поля, позволяет открывать глубокие симметрии между запутанными узлами высокой мерности. Была зафиксирована размерность, соответствующая относительно непротиворечивой теории, она равна 506.

С помощью теории суперструн можно объяснить «клочковатость» распределения вещества во Вселенной. Суперструны — это нити, оставшиеся от вещества только что родившейся Вселенной. Они невероятно подвижны и плотны, искривляют пространство вокруг себя, образуют клубки и петли, причем массивные петли могли бы создавать гравитационное притяжение, достаточно сильное, чтобы зарождались элементарные частицы, галактики и скопления галактик. К 1986 г. опубликовано много работ по космическим струнам, хотя сами они до сих пор не обнаружены. Найти суперструны считают возможным по искривлению пространства, которое они вызывают, действуя как гравитационная линза, или по испускаемым ими гравитационным волнам. Эволюцию суперструн разыгрывают на компьютерах, и на экране дисплея возникают картины, соответствующие наблюдаемым в космосе, — там тоже образуются волокна, слои и гигантские пустоты, в которых практически нет галактик.

Это необычайное сближение космологии и физики элементарных частиц в последние 30 лет дало возможность разобраться в сути процессов рождения пространства-времени и вещества в коротком интервале от 10-43 до 10-35 с после первичной сингулярности, называемой Большим Взрывом. Число размерностей 10 (супергравитация) или 506 (теория суперструн) — не окончательно, могут появиться и более сложные геометрические образы, но непосредственному обнаружению множество дополнительных размерностей не доступно. Истинная геометрия Вселенной, вероятно, не имеет трех пространственных измерений, что характерно лишь для нашей Метагалактики — наблюдаемой части Вселено.

И все они, кроме трех, в момент Большого Взрыва (10—15 млрд лет назад) свернулись до планковских размеров. На больших расстояниях (до размеров Метагалактики 1028 см) геометрия евклидова и трехмерна, а на планковских — неевклидова и многомерна. Считают, что разрабатываемые сейчас Теории Всего Сущего (ТВС) должны объединить описания всех фундаментальных взаимодействий между частицами.

Совпадение предмета исследований изменило сложившуюся методологию наук. Астрономия считалась наблюдательной наукой, а ускорители — инструментом в физике элементарных частиц. Теперь стали строить предположения о свойствах частиц и их взаимодействиях в космологии, и проверить их стало возможным уже для нынешнего поколения ученых. Так, из космологии следует, что число фундаментальных частиц должно быть невелико. Это предсказание относилось к анализу процессов первичного синтеза нуклонов, когда возраст Вселенной составлял около 1 с, и сделано оно было в то время, когда казалось, что достижение больших мощностей на ускорителях приведет к увеличению числа элементарных частиц. Если бы частиц было много, Вселенная была бы сейчас иной.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: