Интегрированием по частям называется нахождение интеграла по формуле:
,
где
и
— непрерывно дифференцируемые функции от
. С помощью этой формулы нахождение интеграла
сводится к отысканию другого интеграла
. Ее применение целесообразно в тех случаях, когда последний интеграл либо проще исходного, либо ему подобен.
Применяется формула в следующих случаях:
1) Подынтегральная функция является произведением многочлена на показательную или тригонометрическую функцию.
Это интегралы вида:
,
,
.
В этом случае в качестве
выбирается многочлен
.
Пример.
.
Решение. Подынтегральная функция есть произведение многочлена на тригонометрическую функцию (1 случай). Поэтому в качестве
выбирается многочлен.

.
2) Подынтегральная функция является произведением многочлена на логарифмическую или обратную тригонометрическую функцию.
Это интегралы вида:
,
,
,
,
.
В качестве
следует принимать обратную тригонометрическую или логарифмическую функцию.
Пример.
.
Решение. Подынтегральная функция есть логарифмическая функция (2 случай). Поэтому в качестве
выбирается логарифмическая функция.

.






