Доверительный интервал для оценки математического ожидания нормально распределённой случайной величины при известной дисперсии

Пусть исследуемая случайная величина Х распределена по нормальному закону с известным средним квадратическим σ, и требуется по значению выборочного среднего оценить ее математическое ожидание а. Будем рассматривать выборочное среднее как случайную величину а значения вариант выборки х1, х2,…, хп как одинаково распределенные независимые случайные величины Х 1, Х 2,…, Хп, каждая из которых имеет математическое ожидание а и среднее квадратическое отклонение σ. При этом

, (38.1)

(используем свойства математического ожидания и дисперсии суммы независимых случайных величин). Оценим вероятность выполнения неравенства . Применим формулу для вероятности попадания нормально распределенной случайной величины в заданный интервал:

. (38.2)

Тогда, с учетом того, что ,

, (38.3)

где . Отсюда , и предыдущее равенство можно переписать так:

. (38.4)

Итак, значение математического ожидания а с вероятностью (надежностью) γ попадает в интервал , где значение t определяется из таблиц для функции Лапласа так, чтобы выполнялось равенство 2Ф(t) = γ.

Пример. Найдем доверительный интервал для математического ожидания нормально распределенной случайной величины, если объем выборки п = 49, σ = 1,4, а доверительная вероятность γ = 0,9.

Определим t, при котором Ф(t) = 0,9:2 = 0,45: t = 1,645. Тогда

, или 2,471 < a < 3,129.

Найден доверительный интервал, в который попадает а с надежностью 0,9.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: