Задачи

2.1 Найти матрицу преобразования системы декартовых координат на плоскости при повороте на угол .

Решение задачи 2.1 Матричные элементы искомой матрицы вычисляются как скалярные произведения , здесь индексы i,j принимают только два значения: 1 или 2. Так как все орты по определению имеют единичные модули, каждое скалярное произведение равно косинусу угла между соответствующими ортами. Нарисуйте на листе бумаги пояснительный чертеж и убедитесь, что углы между парами базисных орт и одинаковы и равны углу поворота . Поэтому . Угол между ортами равен , и соответственно . Угол между ортами равен , поэтому .

2.1.1. Убедиться, что определитель матрицы равен 1.

2.1.2 Убедиться, что матрица ортогональна, т.е. , где -транспонированная матрица, а -единичная матрица.

2.1.3 Убедиться, что - матрица поворота на угол совпадает с произведением матриц и , которые являются матрицами поворота на углы и соответственно.

2.1.4. Убедиться, что матрица поворота на угол совпадает с матрицей , где - матрица поворота на угол .

2.2 Найти матрицу поворота в трехмерном пространстве относительно заданной координатной оси на угол .

2.2.1 Вокруг оси Oz

Решение задачи 2.2.1 Очевидно, что базисные орты , повернутой вокруг оси Oz системы координат, лежат в Oxy плоскости исходной координатной системы. Выше (см. задачу 2.1) мы уже вычислили скалярные произведения для i,j=1 и 2. Фактически мы нашли соответствующие им матричные элементы искомой матрицы повороты в трехмерном пространстве: , . Для нахождения остальных матричных элементов заметим, что базисные орты ортогональны орту , поэтому . После выполнения поворота вокруг оси Oz направление аналогичной оси новой системы координат не изменится, т.е. орт . Оставшиеся матричные элементы вычисляются тривиально: (j=1,2,3). Выпишем явный вид матрицы поворота вокруг оси Oz:

2.2.2 Вокруг оси Ox

Решение задачи 2.2.2 во многом аналогично решению предыдущей задачи.

Приведем в качестве ответа явный вид искомой матрицы поворота:

2.2.3 Вокруг оси Oy

2.3 Найти матрицу поворота в трехмерном пространстве на углы Эйлера. Углы Эйлера определены следующим образом: вначале проводится поворот на угол вокруг оси , затем производится поворот на угол вокруг новой оси , а после этого производится поворот на угол вокруг новой оси .

2.3.1 Доказать, что матрица может быть записана в виде произведения трех матриц , где матрица соответствует повороту на угол вокруг оси , матрица соответствует повороту на угол вокруг новой оси , матрица соответствует повороту на угол вокруг новой оси .

Решение задачи 2.3.1 Рассмотрим вектор с компонентами , заданными в исходной системе координат . Объединим его компоненты в матрицу, состоящую из одного столбца (в так называемый вектор-столбец). Компоненты этого вектора в новой системе координат , повернутой вокруг оси на угол , вычислим как матричное произведение . Давайте рассматривать повернутую систему координат как новую исходную, и совершим далее поворот вокруг ее оси на угол . Компоненты вектора в новой, повернутой системе координат вычислим как матричное произведение .

Матрица поворота составлена из косинусов углов между ортами новой исходной, и новой повернутой координатных систем. Для ее вычисления мы фактически должны повторить решение задачи 2.2.2 и получить в результате ту же матрицу с заменой угла на . Давайте примем систему координат

за новую исходную, и выполним последний поворот вокруг оси на угол . Компоненты вектора в системе координат теперь вычисляются как .

Матрица составлена их косинусов углов между соответствующими ортами. Она совпадает с матрицей поворота вокруг оси Oz, найденной в ходе решения задачи 2.2.1, с заменой угла на . Итого: . Приведем для справки явный вид матрицы поворота на углы Эйлера , , .

2.3.2 Доказать, что .

2.3.3 Выразить матрицу обратного преобразования через произведение матриц поворотов вокруг осей Ox и Oz.

2.4 Найти матрицу для следующих углов Эйлера:

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

2.5 В случае двумерного пространства вычислить компоненты вектора в системе координат повернутой на угол по сравнению с исходной. Компоненты вектора и угол следующие:

2.5.1

2.5.2

2.5.3

2.5.4

2.5.5

2.5.6

2.6 В случае двумерного пространства вычислить компоненты тензора второго ранга в системе координат, повернутой на угол по сравнению с исходной. Компоненты тензора и угол следующие:

2.6.1

2.6.2

2.6.3

2.6.4

2.6.5

2.6.6

2.7 В трехмерном пространстве заданы компоненты вектора. Найти

компоненты вектора в системе координат, повернутой на угол вокруг оси Ox

по сравнению с исходной. Компоненты вектора и угол следующие:

2.7.1

2.7.2

Решение задачи 2.7 дается общей формулой:

Для конкретного варианта, указанного в пункте 2.7.1 получаем

2.8 В трехмерном пространстве заданы компоненты вектора. Найти компоненты вектора в системе координат, повернутой на угол вокруг оси Oy по сравнению с исходной. Компоненты вектора и угол следующие:

2.8.1

2.8.2

2.9 В трехмерном пространстве заданы компоненты вектора. Найти компоненты вектора в системе координат, повернутой на угол вокруг оси Oz по сравнению с исходной. Компоненты вектора и угол следующие:

2.9.1

2.9.2

2.10 В случае двумерного пространства найти компоненты тензора в системе координат, повернутой относительно исходной на угол .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: