Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.
Определение 14.9 Квадратную матрицу
назовем вырожденной или особенной матрицей, если
, и невырожденной или неособенной матрицей, если
.
Предложение 14.21 Если обратная матрица существует, то она единственна.
Доказательство. Пусть две матрицы
и
являются обратными для матрицы
. Тогда
и 
Следовательно,
.
Предложение 14.22 Если квадратная матрица
является невырожденной, то обратная для нее существует и
![]() | (14.14) |
где
- алгебраические дополнения к элементам
.
Доказательство. Так как для невырожденной матрицы
правая часть равенства (14.14) всегда существует, то достаточно показать, что эта правая часть является обратной матрицей для матрицы
. Обозначим правую часть равенства (14.14) буквой
. Тогда нужно проверить, что
и что
. Докажем первое из этих равенств, второе доказывается аналогично.
Пусть
. Найдем элементы матрицы
, учитывая, что
:

Если
, то по предложению 14.17 сумма справа равна нулю, то есть
при
.
Если
, то

Сумма справа представляет собой разложение определителя матрицы
по
-ой строке (предложение 14.16). Таким образом,

Итак, в матрице
диагональные элементы равны 1, а остальные равны нулю, то есть
.
Результаты предложений 14.20, 14.21, 14.22 соберем в одну теорему.
Теорема 14.1 Обратная матрица для квадратной матрицы
существует тогда и только тогда, когда матрица
- невырожденная, обратная матрица единственна, и справедлива формула (14.14).
Замечание 14.12 Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца, а второй - номер строки, в которые нужно записать вычисленное алгебраическое дополнение.
Пример 14.7 Найдите обратную матрицу для матрицы
.
Решение. Находим определитель

Так как
, то матрица
- невырожденная, и обратная для нее существует.
Находим алгебраические дополнения:





Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй - строке:
![]() | (14.15) |
Полученная матрица и служит ответом к задаче.
Замечание 14.13 В предыдущем примере было бы точнее ответ записать так:
![]() | (14.16) |
Однако запись (14.15) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (14.15) предпочтительнее, если элементы матриц - целые числа. И наоборот, если элементы матрицы
- десятичные дроби, то обратную матрицу лучше записать без множителя
впереди.
Замечание 14.14 При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.
Пример 14.8 Найдите обратную матрицу для матрицы
.


