Степенные ряды

Опр. Выражение вида а0+а1х+а2х2+…+акхк+…, (*)

где а0, а1,а2,… - некоторая числовая последовательность наз степенным рядом.

а0,а1,а2,…- коэффициенты степенного ряда.

Если х придавать числовые значения, то будем получать числ. Ряды, которые могут сходиться и расходиться. Множество Х, при которых ряд (*) сходится, называется областью сходимости.

Теорема Абеля.

1)Если ряд (*) сходится в некоторой точке х0≠0, то этот ряд будет сходится и при всех х, удовлетворяющих условию: |х|<|х0|.

2)Если ряд (*) расходится в т. х1≠0, то этот ряд расходится при всех x: |х|>|х1|.

Док-во.1). По усл степенной ряд а0+а1х0+а2х02+…+акх0к+…(**) сходится, поэтому акх0к →0, при к→∞. Значит, сходящаяся последовательность {акх0к}

ограничена, т.е. сущ-т константа М такая, что |акх0к|<M для всех к=0,1,2…

Рассмотрим |а0|+|а1х0|+|а2х02|+…+|акх0к|+….(***)

Пусть |х|<|х0|, тогда |акхк|=|акх0к||х/х0|<М|х/х0|к, причем |х/х0|<1. Поэтому члены ряда (***) не превосходят соответствующих членов сходящегося ряда

М+М|х/х0|+М|х/х0|2+…+М|х/х0|к+…- суммы бесконечно убывающей геометрической прогрессии. Поэтому ряд (***) сходится, а ряд (**) сходится абсолютно.

2)Предположим, что ряд(**) расходится при х=х1, но для некоторого х:| х |>х1 По первой части теоремы ряд (**) сходится абсолютно при х=х1, следовательно получили противоречие.

Область сходимости степенного ряда. Радиус сходимости.

Для степенного ряда (*) возможны только следующие случаи:

1)ряд сходится только в т.х=0

2)ряд сходится при всех х

3)существует такое R>0, что ряд сходится в интервале (-R;R) и расходится вне отрезка [-R;R]. R- радиус сходимости степенного ряда

Теорема. Если существует предел D=lim|an+1/an| при n→∞, отличный от 0, то R степенного ряда а0+а1х+а2х2+…+аnхn+…равен:

R=1/D= lim|an/an-1| при n→∞.

Опр. Пусть ф-я f(x)=Σn=1anx, то говорят, что ф-я разлагается в степенной ряд с обл. сходимости(-R;R)

Теоремы о св-вах степенных рядов.

1. Пусть ф-я f(x) разлагается на интервале (-R;R) в степенной ряд а0+а1х+а2х2+…+аnхn+…(1). Рассмотрим степенной ряд

а1+а2х+…+аnхn-1+…(2), полученный почленным дифференцированием ряда (1). Тогда: ряд (2) имеет тот же радиус сходимости R, Что и (1). На вем интервале (-R;R) ф-я f(x) имеет производную f(x)’, которая разлагается в степенной ряд (2).

2. Если ф-я f(x) разлагается на интервале (-R;R) в степенной ряд, то она интегрируема в этом интервале. Интеграл от суммы ряда равен сумме интегралов от членов ряда.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: