Свободные колебания без учета сил сопротивления. Лекция 3. Прямолинейные колебания точки

Лекция 3. Прямолинейные колебания точки

В данной лекции рассматриваются следующие вопросы:

1. Свободные колебания без учета сил сопротивления.

2. Понятие о фазовой плоскости.

3. Свободные колебания в поле постоянной силы.

4. Параллельное включение упругих элементов.

5. Последовательное включение упругих элементов.

6. Вынужденные колебания. Резонанс.

7. Свободные колебания с вязким сопротивлением.

8. Вынужденные колебания с вязким сопротивлением.

Изучение данных вопросов необходимо для динамики колебательного движения механических систем, теории удара, для решения задач в дисциплинах «Сопротивление материалов» и «Детали машин».

Свободные колебания без учета сил сопротивления.

Учение о колебаниях составляет основу ряда областей физики и тех­ники. Хотя колебания, рассматриваемые в различных областях, на­пример в механике, радиотехнике, акустике и др., отличаются друг от друга по своей физической природе, основные законы этих коле­баний во всех случаях остаются одними и теми же. Поэтому изуче­ние механических колебаний является важным не только по той причине, что такие колебания очень часто имеют место в технике, но и вследствие того, что результаты, полученные при изучении меха­нических колебаний, могут быть использованы для изучения и уясне­ния колебательных явлений в других областях.

Начнем с изучения свободных колебаний точки без учета сил сопротивления. Рассмотрим точку М, движущуюся прямолинейно под действием одной только восстанавливающей силы , направленной к неподвижному центру О и пропорциональной расстоянию от этого центра. Проекция силы на ось Ох (рис.27) будет равна

Fx=-cx.

Рис.27

Сила , как видим, стремится вернуть точку в равновесное положение О, где ; отсюда и наименование «восстанавливающая» сила. Примером такой силы является сила упругости. Коэффициент c пропорциональности называется жесткостью упругого элемента.

Найдем закон движения точки М. Составляя дифференциальное уравнение движения получим

.

Деля обе части равенства на т и вводя обозначение

,

приведем уравнение к виду

.

Уравнение представляет собою дифференциальное уравне­ние свободных колебаний при отсутствии сопротивления. Реше­ние этого линейного однородного дифференциального уравнения второго порядка ищут в виде x=ent. Полагая x=ent, получим для определения п так называемое характеристиче­ское уравнение, имеющее в данном случае вид п2 + k2 = 0. Поскольку корни этого характеристического уравнения являются чисто мнимыми (), то, как известно из теории дифференциальных уравне­ний, общее решение имеет вид

,

где C 1 и С 2 - постоянные интегрирования. Если вместо постоянных C 1 и С 2 ввести постоянные а и , такие, что , , то мы получим или .

Это другой вид решения, в котором постоянными интегрирования являются а и . Им удобнее пользоваться для общих исследований.

Скорость точки в рассматриваемом движении равна

.

Колебания, совершаемые точкой по закону называются гар­моническими колебаниями.

Всем характеристикам этого движения можно дать наглядную ки­нематическую интерпретацию. Рассмотрим точку В, движущуюся равномерно по окружности радиуса а из положения В 0 определяемого углом (рис.28).

Пусть постоянная угловая ско­рость вращения радиуса ОВ равна k. Тогда в произвольный момент времени t угол и про­екция М точки В на диаметр, перпендику­лярный к DE, движется по закону , где х=ОМ, т.е. совер­шает гармонические колебания.

Рис.28

Величина а, равная наибольшему откло­нению точки М от центра колебаний, назы­вается амплитудой колебаний. Величина называется фазой колебаний.

Величина k, совпадающая с угловой скоростью вращения радиуса ОВ, показанного на рис.15 называется круговой частотой колебаний.

Промежуток времени Т (или ), в течение которого точка совер­шает одно полное колебание, называется периодом колебаний.

По истечении периода фаза изменяется на . Следовательно, должно откуда период

.

Величина , обратная периоду и определяющая число колебаний, совершаемых за одну секунду, называется частотой колебаний

.

Отсюда видно, что величина k отличается от Т только постоянным множителем . В дальнейшем мы обычно для краткости частотой колебаний будем называть величину k.

Значения а и определяются по начальным условиям. Считая при t =0 , получим и . Отсюда, складывая сначала квадраты этих равенств,а затем деля их почленно, найдем:

.

Отметим, что свободные колебания при отсутствии сопротивления обладают следующими свойствами: 1) амплитуда и начальная фаза колебаний зависят от начальных условий; 2) частота k, а следова­тельно, и период Т колебаний от начальных условий не зависят.

Рис.29

Влияние постоянной силы на свободные колебания точки. Пусть на точку М, кроме восстанавливающей силы F, направленной к центру О, действует еще постоянная по модулю и направлению сила Р (рис.29). Ве­личина силы F по прежнему пропорциональна расстоянию от центра О, т.е.

Очевидно, что в этом случае положением рав­новесия точки М будет центр О 1 отстоящий от О на расстоянии , которое определяется равенством или

.

Величину назовем статическим отклонением точки. Примем центр O 1 за начало отсчета и направим координатную ось О 1 х в сторону действия силы . Тогда , . В результате, составляя дифференциальное уравнение дви­жения и учитывая, что согласно равенству , будем иметь:

или .

Отсюда заключаем, что постоянная сила Р не изменяет характера колебаний, совершаемых точкой под действием восстанавливающей силыF, а только смещает центр этих колебаний в сторону действия силы Р на величину ста­тического отклонения .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: