1. Известно, что
.Найти значение истинности следующих высказываний:
а)
; б)
;
в) 
2. Известно, что предикаты
и
имеют натуральные предметные переменные. Построить начала их таблиц истинности и выяснить истинностные значения следующих высказываний:
а)
; б)
; в)
.
3. Пусть предикаты
и
определены на множестве натуральных чисел. Зададим новые Z предикаты
. Найти истинностные значения следующих высказываний:
а)
; б)
; в)
.
4. Записать формулой алгебры предикатов следующие предложения:
а) «если х простое число, то оно не делится ни на какое простое у»;
б) «если число х делится на 2 и на 3, то оно составное»;
в) «каждый квадрат являются параллелограммом»;
е) «каждое простое число нечетно, но существуют нечетные составные числа».
5. Зная, что
и
следующие формулы предикатов алгебры сформулировать по-русски:
а)
;
б)
;
в)
.
6. На графике изобразить области истинности предикатов с действительными предметными переменными:
а)
; б)
; в)
;
г)
; д)
.
7. Пусть
– четное число»,
– четное число» определены на Z. Найти истинностные значения высказываний:
а)
;
б)
;
в)
.
8. Проверить, имеет ли место логическое следование, если все участвующие в записях предметные переменные являются действительными:
а)
; б)
; в)
.
9. С помощью равносильностей алгебры предикатов доказать: а)
;
б)
;
в)
.
10. Для следующих утверждений сформулировать обратное, противоположное, обратное противоположному и выяснить, какие из них являются теоремами:
а) «Если в четырехугольник можно вписать окружность, то этот четырехугольник является ромбом»;
б) «Если четырехугольник является ромбом, то его диагонали взаимно перпендикулярны»;
в) «Если два числа делятся на 7, то их произведение делится на 7».
11. Следующие формулы алгебры предикатов записать с ограниченными кванторами: а)
;
б)
.
12. Следующие формулы с ограниченными кванторами записать с обычными кванторами: а)
;
б)
.
13. Перевести предложение на логический язык, построить его отрицание и полученное отрицание перевести на русский язык:
а) «Для любых натуральных чисел х и у существует натуральное число
такое, что если
», то
»;
б) «Для любых натуральных чисел х и у и
, если
и
, то
»;
в) «Существует натуральное число у такое, что если
», то для любого натурального числа
верно
».
14. Найти области истинности предикатов, определенных на множестве действительных чисел:
а)
; б)
;
в)
; г)
.
15. Перевести предложение на логический язык, построить его отрицание и это отрицание перевести на русский язык:
а) «Если при всяком положительном х разность
положительна, то у отрицателен»;
б) «Если при некотором отрицательном х произведение ху отрицательно, то у положителен»;
в) «Если существует неотрицательное х такое, что разность
отрицательна, то у отрицателен», то для любого натурального числа
верно
»;
г) «Если при некотором у произведение
положительно, то х положителен»;
д) «Если при всяком положительном х сумма
больше единицы, то у положителен».
16. Если 6 – составное число (A), то 12 – составное число (B). Если 12 – составное число, то существует простое число больше чем 12 (C). Если существует простое число больше 12, то существует составное число больше 12 (D). Если 6 делится на 2 (E), то 6 – составное число. Число 12 составное. Следует ли отсюда, что 6 – составное число?
17. Если я поеду автобусом (А), а автобус опоздает (В), то я пропущу назначенное свидание (С). Если я пропущу назначенное свидание и начну огорчаться (D), то мне не следует ехать домой (E). Если я не получу работу (Р), то я начну огорчаться и мне следует поехать домой. Следует ли тогда, что если я поеду автобусом и автобус опоздает, то я получу работу?
18. Если Сергей выиграет теннисный турнир (А), то он будет доволен (В), а если он будет доволен, то он плохой борец в последующих турнирах (С). Но если он проиграет этот турнир, то потеряет поддержку своих болельщиков (D). Он плохой борец в последующих турнирах, если потеряет поддержку своих болельщиков. Если он плохой борец в последующих турнирах, то ему следует прекратить занятия теннисом (E). Сергей или выиграет этот турнир, или проиграет его. Следовательно, ему нужно прекратить занятия теннисом. Справедливо ли приведенное рассуждение с точки зрения логики?
19. Или Анна и Антон одного возраста (А), или Анна старше Антона (В). Если Анна и Антон одного возраста, то Наташа и Антон не одного возраста (С). Если Анна старше Антона, то Антон старше Николая (D). Следует ли отсюда, что либо Наташа и Антон не одного возраста, либо Антон старше Николая?
20. Для предложения: «Если каждое слагаемое суммы четно, то сумма четна» сформулируйте обратное, противоположное и обратно-противоположное предложения. Какие из них верны?
21. Сформулируйте теорему «Если два прямоугольника равны, то площади их равны» в виде:
а) необходимого условия; б) достаточного условия.
22. Утверждение «Равенство треугольников есть достаточное условие их равновеликости» сформулируйте в виде условного предложения (в форме «если А, то В»).
23. Утверждение «Четность суммы есть необходимое условие четности каждого слагаемого» сформулируйте в виде условного предложения.
24. Утверждение «Для того чтобы диагонали четырехугольника были перпендикулярны, достаточно, чтобы этот четырехугольник был ромбом» сформулируйте в виде: а) условного предложения; б) необходимого условия.
25. Теорему «Параллелограмм является ромбом тогда и только тогда, когда его диагонали взаимно перпендикулярны» сформулируйте в виде необходимого и достаточного условия (дайте две формулировки).
26. Родители сказали детям: «Если мы поедем в дом отдыха, то вы поедете в лагерь». В школе детей спросили, куда они поедут летом. «Если мы поедем в лагерь, то родители поедут в дом отдыха», – ответил Петя. Галя сказала: «Если папа с мамой не поедут в дом отдыха, то мы не поедем в лагерь». «Нет, не так, – вмешался Коля. – Если мы не поедем в лагерь, то родители не поедут в дом отдыха». Чей ответ равносилен тому, что сказали родители? Кто из детей сказал разными словами одно и то же?
27. Докажите, что для любого натурального n справедливо равенство:
а)
;
б)
;
в)
;
г)
;
д)
;
е)
.
28. Пусть
. Найдите выражение для
, докажите.
29. При каких
справедливо неравенство
?
30. При каких
справедливо неравенство
?
31. Докажите, что
.
32. Докажите, что
.
33. Доказать, что

34. Пусть
– геометрическая прогрессия со знаменателем
. Докажите, что
,
.
35. Докажите неравенство Бернулли для любого действительного
:
.
36. Докажите, что

37. Докажите, что
.
38. Докажите, что
.
39. Докажите, что сумма кубов трех последовательных натуральных чисел делится на 9.
40. Докажите, что 
41. Докажите, что при целом четном
.
42. Докажите, что
при любом натуральном
, кратном 4.
43. Докажите, что число, запись которого состоит из
единиц, делится на
.
44. Пусть
– последовательность:
,
. Докажите, что
.
45. Пусть
– последовательность,
,
. Найдите выражение
через
, доказать его справедливость при всех натуральных
.
46. Пусть
,
,
. Докажите, что
для всех
.
47. Пусть
– последовательность Фибоначчи:
,
,
. Докажите, что
.
48. Докажите свойства чисел Фибоначчи:
1)
;
2)
(рассмотреть отдельно четные, нечетные номера).
49. Пусть
,
. Докажите, что
.
50. Пусть
,
. Докажите, что
.
51. Докажите, что
при
,
.
52. Пусть
– последовательность,
,
. Докажите, что
.
53. Докажите, что
при
.
54. Докажите, что
.
55. Докажите, что
.
56. Докажите, что
при
.
57. Докажите
при
.
58. Докажите, что среднее геометрическое положительных чисел не больше их среднего арифметического:
.






