Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Как вычислить двойной интеграл? Примеры решений




Прозвучал удар гонга, который открывает второй раунд в бою с двойными интегралами. Если вы недавно надели перчатки или вообще боксируете с грушей, то, пожалуйста, начните с первого раунда Двойные интегралы для чайников. Настоятельно рекомендую разобраться со всеми примерами вводного урока без халтуры, это очень важно. К тому же, добрый дядя Саша нарисовал много картинок, которые можно распечатать и наклеить у себя в туалете. Помните, что Коперник свои блестящие открытия в астрономии делал именно там.

Однако задорное получилось вступление…. Задумался вот… почему? Да потому что мне хорошо. А отчего хорошо, поясню в конце статьи.

Вспоминаем общую запись двойного интеграла:

В первой статье Двойные интегралы для чайников я очень подробно рассмотрел понятие двойного интеграла, алгоритм его решения, важнейшие задачи на обход области интегрирования. Также были прорешаны простейшие двойные интегралы в примерах на нахождение площади плоской фигуры.

Снова посмотрим на общую запись двойного интеграла и заметим, что в нём притаилась функция двух переменных . А когда речь заходит о функции двух переменных, то это часто попахивает сероводородом частными производными второго порядка. Поэтому для освоения примеров вам необходимо уметь более или менее уверенно их находить.

В большинстве практических задач требуется формально вычислить двойной интеграл, но, помимо этого, он обладает отличным геометрическим смыслом – с помощью двойного интеграла помимо площади можно вычислить еще и объём. Геометрический смысл двойного интеграла поясню ниже на конкретных примерах.

Начинаем набивать наш двойной интеграл разнообразной начинкой:

Пример 1

Вычислить двойной интеграл
,
Изменить порядок интегрирования и вычислить двойной интеграл вторым способом.

Решение: Изобразим область интегрирования на чертеже:

Напоминаю, что выполнение чертежа – необходимый начальный этапрешения. Чертёж крайне важно выполнить правильно и точно, поскольку ошибка в графике незамедлительно запорет всё задание.

Выберем следующий порядок обхода:

Вопросы порядка обхода области интегрирования, я комментировать практически не буду, пожалуйста, смотрите статью Двойные интегралы для чайников.

Таким образом:

Обратите внимание на следующее действие: в данном случае можно вынести «икс» из внутреннего интеграла во внешний интеграл. Почему? Во внутреннем интеграле интегрирование проводится по «игрек», следовательно, «икс» считается константой. А любую константу можно вынести за знак интеграла, что благополучно и сделано.

С интегралами настоятельно рекомендую разбираться по пунктам:




1) Используя формулу Ньютона-Лейбница, найдём внутренний интеграл:

Вместо «игрека» подставляем функции!

2) Результат, полученный в первом пункте, подставим во внешний интеграл , при этом ни в коем случае не забываем про «икс», который там уже находится:

Готово.

Замечательно, если у вас под рукой есть микрокалькулятор, на котором можно считать обыкновенные дроби, он значительно ускорит заключительные вычисления. В последующих примерах я не буду подробно расписывать приведение дробей к общему знаменателю, а просто запишу ответ.

Выполняем вторую часть задания: изменим порядок обхода области и вычислим двойной интеграл вторым способом.

Перейдём к обратным функциям:

Для наглядности еще раз приведу чертёж, он будет точно таким же, но с другими обозначениями графиков:

Второй способ обхода области:

Таким образом:

Вот здесь уже «икс» является «родным» для внутреннего интеграла, поэтому его нельзя вынести во внешний интеграл.

1) Используя формулу Ньютона-Лейбница, вычислим внутренний интеграл:

Вместо «икса» подставляются функции!
Всегда проявляйте повышенное внимание при подстановке пределов интегрирования.

2) Результат, полученный в первом пункте, подставим во внешний интеграл и проведём окончательные вычисления:

Результаты совпали, значит, задание выполнено верно.

Если есть время, постарайтесь всегда проводить проверку, даже если этого не требуется в условии: вычислили интеграл одним способом – затем изменили порядок обхода области и вычислили вторым способом.

Ответ:

Пример 2

Вычислить двойной интеграл
,
Выполнить проверку: изменить порядок интегрирования и вычислить двойной интеграл вторым способом.



Это пример для самостоятельного решения. Обратите внимание, что в двойном интеграле изначально присутствует константа. А константу можно вынести за знак двойного интеграла, в данном случае:

В ходе решения вынесение константы целесообразно проводить в момент перехода к повторным интегралам.

Как видите, свойство линейности справедливо не только для «обычных», но и для кратных интегралов. Интеграл от интеграла недалеко падает.

Самое главное потом при вычислениях вынесенную константу не потерять. А забывают о ней часто.

Примерный образец чистового оформления примера в конце урока.





Дата добавления: 2015-05-24; просмотров: 4094; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома - страшная бессонница, которая потом кажется страшным сном. 8650 - | 7096 - или читать все...

Читайте также:

 

34.226.234.20 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.004 сек.