double arrow

Прикладное программное обеспечение

Прикладное программное обеспечение (ППО) составляют программы конечного пользователя. Это самый обширный класс программного обеспечения. В настоящее время в большинстве сфер человеческой деятельности разработаны и применяются прикладные программные продукты. Везде, где требуется выполнить большие математические расчеты или производится обработка больших объемов разнообразных данных, или требуется быстрый анализ ситуации с принятием управляющего решения, – компьютеры под управлением прикладного программного обеспечения с успехом заменяют человека.

Классификация прикладного программного обеспечения

Прикладное программное обеспечение можно разделить на три большие группы (рисунок 3.4). Такая классификация весьма условна, потому что некоторые типы программ (например, программы обработки текста) имеют своих представителей и в классе общего назначения (редакторы и процессоры) и в классе профессиональных программ (издательские системы).

Рисунок 3.4 – Классификация прикладного программного обеспечения

Программные средства общего назначения

Прикладное программное обеспечение общего назначения используется для решения наиболее общих задач информационного характера в любой сфере человеческой деятельности. Оно объединяет в себе широко используемые программы большинством пользователей персональных компьютеров, например, текстовые редакторы, электронные таблицы, базы данных, графические системы, игры, развлечения.

К программам обработки текста относятся текстовые редакторы, текстовые процессоры. Граница между ними весьма условна. Текстовые редакторы, например NotePad – разработка Microsoft, способны выполнять основные функции редактирования: набор, внесение исправлений, сохранение, работа с фрагментами. Текстовые процессоры, например Word – разработка Microsoft, кроме того, имеют возможности разнообразного оформления, а некоторые позволяют создавать документы, предназначенные для просмотра не в бумажном виде, а на компьютере (электронные документы).

Издательские системы автоматизируют процесс верстки полиграфических изданий. Они отличаются расширенными средствами управления взаимодействия текста с параметрами страницы и графическими объектами, но имеют более слабые возможности по автоматизации ввода и редактирования текста. Их целесообразно применять к документам, которые предварительно обработаны в текстовых процессорах и графических редакторах. Наиболее известными из издательских пакетов являются: Adobe PageMaker, QuarkXPress, Microsoft Publisher, Corel Ventura.

Электронные таблицы. Основное назначение электронных таблиц – обработка различных типов данных табличной формы, например, планово-финансовые, бухгалтерские документы, небольшие инженерные расчеты (Excel — разработка Microsoft, Lotus 1-2-3 — разработка Lotus). Основное преимущество электронных таблиц, в сравнении с текстовыми процессорами (где тоже могут вестись таблицы, производиться небольшие вычисления и сортировка), в том, что содержание одних ячеек может меняться автоматически в соответствии с изменением содержания других.

Иными словами, ячейки могут быть функционально зависимы. Кроме того, табличные процессоры имеют возможности ведения небольших баз данных и визуализации данных в виде различных таблиц, диаграмм и графиков, т.е. средства ведения таблиц, средства табличных расчетов подкрепляются возможностями создания наглядных отчетов. Они находят широкое применение в бухгалтерском учете, анализе финансовых и торговых рынков, средствах обработки результатов научных и экономических экспериментов, т.е. в автоматизации регулярно повторяемых вычислений больших объемов числовых и текстовых данных, представляющих табличные структуры.

Системы управления базами данных (СУБД). Программы этого класса (например, Access – разработка Microsoft) позволяют работать с большими объемами структурированных данных – базами данных (как правило, это табличные структуры). СУБД предназначены для автоматизации процедур создания, хранения и извлечения электронных данных. Многие, существующие в различных сферах человеческой деятельности, информационно-справочные программные комплексы реализованы с использованием инструментальных средств СУБД.

С базами данных (БД) обычно работают две категории исполнителей: проектировщики (разрабатывают структуру для хранения информации) и пользователи (наполняют БД). Структура простейшей БД аналогична структуре обычной таблицы. Каждая запись соответствует строке, каждое поле – столбцу. Свойства данных в полях (столбцах) могут различаться в зависимости от их типа. Таким образом, поля в базе данных определяют не только общий вид таблицы, но и групповые свойства данных.

Это обусловливает специфические особенности при работе с программными средствами данного класса. Кроме того, работа с файлами создаваемыми СУБД, несколько отличается от работы с файлами других типов, создаваемых прочими приложениями. В частности ряд операций по преобразованию файлов осуществляется в обход требований операционной системы для обеспечения целостности данных. В случае, когда БД содержит несколько таблиц, между таблицами устанавливаются специальные связи, называемые реляционными отношениями. Наиболее распространенными пакетами СУБД для ПК являются MS Access, Oracle, Paradox, dBase.

Большинство современных СУБД позволяют создавать небольшие программы обработки данных на встроенных языках, имеют оформительские возможности, позволяющие на основе собранных и обработанных данных создать отчет. Множество СУБД, также как и текстовые процессоры, имеют своих представителей и в ППО общего и в ППО специального назначения. На уровне ППО общего назначения – это настольные СУБД, на уровне специальном – это большие СУБД, составляющие основу информационных систем и позволяющие работать в компьютерных сетях.

Графические системы. Это программы, предназначенные для работы с графическими изображениями. К ним относятся редакторы растровой и векторной графики, программы обработки трехмерной графики (ЗD-редакторы).

Растровые редакторы для представления изображений используют растры, т.е. совокупности точек, имеющих свой цвет и яркость. В них удобно обрабатывать фотографии и объекты, имеющие мягкие цветовые переходы. К сожалению, масштабирование таких картинок в любую сторону обычно ухудшает качество. При уменьшении количества точек теряются мелкие детали и деформируются надписи.

Добавление пикселей приводит к ухудшению резкости и яркости изображения, так как новым точкам приходится давать оттенки, средние между двумя и более граничащими цветами. Признанный лидер среди программ данного класса – Adobe Photoshop. Стандартным средством обработки растровых изображений в Windows является графический редактор Paint. В настоящее время распространены следующие форматы растровой графики.bmp,.pcx,.gif,.tif, jpg,.png и др. В Интернете графика представляется в одном из растровых форматов, понимаемых браузерами без установки дополнительных модулей – gif, jpg, png.

Векторные редакторы удобны для работы с чертежами и рисованными картинками. Своего рода стандартном в этом классе являются пакеты Corel Draw и Adobe Illustrator.

В векторной графике изображения описываются с помощью кривых линий, называемых векторами (каждая кривая аппроксимируется многочленом третьего порядка, т.е. массивом коэффициентов – многомерным вектором), а также параметров, описывающих их цвета и расположение. Например, изображение какой-либо фигуры на экране описывается точками, через которые проходит линия контура фигуры. Цвет фигуры задается цветом контура и цветом области внутри этого контура.

При редактировании элементов векторной графики можно изменять параметры линий, описывающих форму графических объектов, можно переносить их, менять размер, форму (это делается математическими преобразованиями), цвет, но это не отразится на качестве их визуального представления. Векторная графика не зависит от разрешения, т.е. может быть показана в разнообразных выходных устройствах с различным разрешением без потери качества. Очевидно, описание простых векторных графических объектов занимает значительно меньше места, чем растровых.

Еще одно преимущество – качественное масштабирование в любую сторону. Увеличение или уменьшение объектов производится увеличением или уменьшением соответствующих коэффициентов в математических формулах. Но векторный формат становится невыгодным при передаче изображений с большим количеством оттенков или мелких деталей (например, фотографий). Таким образом, выбор растрового или векторного формата зависит от целей и задач работы с изображением.

Редакторы трехмерной графики используются для создания пространственных графических композиций, позволяют проследить взаимодействия трехмерных объектов между собой и трехмерных объектов с источником света. Как правило, в таких редакторах сочетается векторный и растровый способы формирования изображений. Пакеты трехмерной графики отличаются богатыми возможностями моделирования, позволяют гибко управлять взаимодействием свойств поверхности объектов со свойствами источников освещения, включают большое число кинематографических возможностей, однако, часто, довольно требовательны к аппаратуре. Среди пакетов этого класса наиболее известны: 3D Studio Max, Maya, Softimage 3D.

Техническим развитием графических редакторов являются специальные системы машинной графики, предназначенные для автоматизации проектно-конструкторских работ в машиностроении, промышленной электронике, строительстве и т.д. Подобные пакеты включают разнообразные чертежные инструменты, и средства трехмерного моделирования, облегчающие проектирование, готовые библиотеки стандартных элементов чертежей и (или) схем, предоставляют развитые средства управления изображением. Также они часто включают в свой состав встроенные макроязыки или языки программирования, средства экспорта-импорта файлов различных форматов. Стандартом среди зарубежных программ является пакет AutoCAD фирмы Autodesk. Примеры отечественных пакетов:, CADMECH, T-Flex CAD, SprutCAD, APM Graph, bCAD, АДЕМ, КОМПАС-ГРАФИК.

Интегрированные программные средства. Отдельные программы, являясь мощным средством решения круга прикладных задач, не могут в полной мере удовлетворить пользователя. Например, выборку данных, предоставленную СУБД, бывает удобно обработать с помощью электронных таблиц, результаты, оформленные в виде наглядных таблиц, поместить в отчет, представляющий собой текстовый документ, который был составлен в текстовом процессоре.

Для совместной работы нескольких программ требуется и унификация форматов обрабатываемых файлов. Такие программные пакеты называются интегрированными программными средствами. Наиболее распространенный продукт этого класса – пакет MS Office (разработка Microsoft), который кроме текстового процессора MS Word, табличного процессора MS Excel и СУБД MS Access интегрирует в себе такие офисные программные средства, как система разработки презентаций MS Power Point, электронный организатор MS Outlook и др.

Объединение функций различных прикладных программ в единую систему приводит к созданию интегрированных пакетов программ, а далее к созданию автоматизированных рабочих мест (АРМ).

Программные средства для решения прикладных математических задач – ППП ориентированные на решение математических задач. При этом под математическойпонимается любая задача, алгоритм решения которой может быть описан в терминах того или иного раздела математики. Большинство современных систем компьютерной математики сочетают в себе возможности проведения расчетов и подготовки форматированных научно-технических документов. Наиболее популярными пакетами данного класса являются: MathCAD, Maple, Matlab, Mathematica, Statistica.

Специализированные системы математического моделирования – ППП, ориентированные на решение научно-прикладных задач в различных областях инженерных знаний (задачи механики жидкости и газа, расчеты на прочность, температурный, вибрационный анализ, моделирование магнитных полей и др.). Сюда можно отнести ряд пакетов, разрабатываемых фирмами ANSYS, Inc., MSC, SAMTECH и др.

Прикладное программное обеспечение специального назначения

Разработчики создают специальные программные системы целевого назначения для специалистов в некоторой предметной области. Такие программы называют авторскими инструментальными системами.

Авторская система представляет интегрированную среду с заданной интерфейсной оболочкой, которую пользователь может наполнить информационным содержанием своей предметной области.

Экспертные системы – это программы, которые ведут себя подобно эксперту в некоторой узкой прикладной области. Они предназначены для анализа данных, хранящихся в базах знаний. В отличие от СУБД, позволяющих производить операции манипуляции данными, экспертные системы производят логический анализ данных, имеют функции самообучения.

Экспертные системы решают задачи с неопределенностью и неполными исходными данными, требующие для своего решения экспертных знаний. Кроме того, эти системы должны уметь объяснять свое поведение и свое решение. Принципиальным отличием экспертных систем от других программ является их адаптивность, т.е. изменчивость в процессе самообучения.

В экспертных системах принято выделять три основных модуля:

- модуль базы знаний;

- модуль логического вывода;

- интерфейс с пользователем.

Экспертные системы, являющиеся основой искусственного интеллекта, получили широкое распространение в науке (классификация животных и растений по видам, химический анализ), в медицине (постановка диагноза, анализ электрокардиограмм, определение методов лечения), в технике (поиск неисправностей в технических устройствах, слежение за полетом космических кораблей и спутников), в политологии и социологии, юриспруденции, лингвистике и т.д.

В последнее время широкую популярность получили программы обработки гипертекстовой информации. Гипертекст – это форма организации текстового материала не в линейной последовательности, а в форме указаний возможных переходов (ссылок), связей между отдельными его фрагментами. В обычном тексте используется обычный линейный принцип размещения информации, и доступ к нему осуществляется последовательно. В гипертекстовых системах информация напоминает текст энциклопедии, и доступ к любому выделенному фрагменту текста осуществляется произвольно по ссылке. Организация информации в гипертекстовой форме используется при создании справочных пособий, словарей, контекстной помощи (Help) в прикладных программах.

Расширение концепции гипертекста на графическую и звуковую информацию приводит к понятию гипермедиа. Идеи гипермедиа получили распространение в сетевых технологиях, в частности в Интернет-технологиях. Технология WWW (World Wide Web) позволила структурировать громадные мировые информационные ресурсы посредством гипертекстовых ссылок. Появились программные средства, позволяющие создавать подобные Web-странички. Стали развиваться механизмы поиска нужной информации в лабиринте информационных потоков.

Мультимедиа (multimedia) – это взаимодействие визуальных и аудиоэффектов под управлением интерактивного программного обеспечения. Мультимедийные игровые и обучающие системы начинают вытеснять традиционные «бумажные библиотеки». Сегодня в библиотеках CD-ROM можно «гулять» по музеям.

Важным типом ППП являются оболочки информационных систем – среда разработчика и администратора, предназначенная для разработки и сопровождения автоматизированных информационных систем (АИС). АИС – это комплекс автоматизированных информационных технологий, предназначенный для информационного облуживания – организованного непрерывного технологического процесса подготовки и выдачи потребителям научной, управленческой и др. информации, используемой для принятия решений в соответствии с нуждами для поддержания эффективной деятельности.

Информационные системы предоставляют широкие возможности:

- в управлении предприятием, например, склад, документооборот офиса (1С: Предприятие);

- в бухгалтерском учете, например, системы, имеющие функции текстовых, табличных редакторов и СУБД. Предназначены для автоматизации подготовки начальных бухгалтерских документов предприятия и их учета, регулярных отчетов по итогам производственной, хозяйственной и финансовой деятельности в форме, приемлемой для налоговых органов, внебюджетных фондов и органов статистического учета (: бухгалтерия);

- в анализе экономической и финансовой деятельности; их используют в банковских и биржевых структурах. Они позволяют контролировать и прогнозировать ситуацию на финансовых, торговых рынках и рынках сырья, выполнять анализ текущих событий, готовить отчеты.

Проектирование информационных систем представляет собой сложную, трудоемкую и длительную работу, требующую высокой квалификации участвующих в ней специалистов.

Тенденции развития современных информационных технологий определяют постоянное возрастание сложности ПО информационных систем, что вызвало потребность в программно-технологических средствах специального класса – CASE-средствах, реализующих CASE-технологию создания и сопровождения ИС. Термин CASE (Computer Aided Software Engineering) имеет весьма широкое толкование. Первоначально значение термина CASE ограничивалось вопросами автоматизации разработки только лишь программного обеспечения, а в настоящее время оно приобрело новый смысл и охватывает процесс разработки сложных ИС в целом.

CASE-технология представляет собой совокупность методов проектирования ИС, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех стадиях разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей. Большинство существующих CASE-средств основано на методах структурного или объектно-ориентированного анализа и проектирования, использующих спецификации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств.

Были созданы такие CASE-системы как:

- ориентированные на этапы жизненного цикла ПО, Design/IDEF (Meta Sotfware), BPWin (LopicWorks);

- функционально полные, т.е. используемые на всех этапах жизненного цикла Designer (Oracle) Developer/2000 (Oracle);

- независимые от СУБД ODBC Sdesigner (SPD), ERWin (Logic- Works), Silverrun (Silverrun Technologies).

Прикладные программы профессионального уровня

Каждая прикладная программа этой группы ориентируется на достаточно узкую предметную область, но проникает в нее максимально глубоко. Так функционируют АСНИ – автоматизированные системы научных исследований, каждая из которых «привязана» к определенной области науки, САПР системы автоматизированного проектирования, каждая из которых также работает в узкой области, АСУ –? автоматизированные системы управления.

Системы автоматизированного проектирования предназначены для выполнения проектных работ с применением математических методов и компьютерной техники. Системы САПР широко используются в архитектуре, электронике, энергетике, механике и др. В процессе автоматизированного проектирования в качестве входной информации используются технические знания специалистов, которые вводят проектные требования, уточняют результаты, проверяют полученную конструкцию, изменяют ее и т.д. Кроме того, в САПР накапливается информация, поступающая из библиотек стандартов (данные о типовых элементах конструкций, их размерах, стоимости и др.). В процессе проектирования разработчик вызывает определенные программы и выполняет их. Из САПР информация выдается в виде готовых комплектов законченной технической и проектной документации.

Автоматизированные системы научных исследований (АСНИ) предназначены для автоматизации научных экспериментов, а также для осуществления моделирования исследуемых объектов, явлений и процессов, изучение которых традиционными средствами затруднено или невозможно. В настоящее время научные исследования во многих областях знаний проводят большие коллективы ученых, инженеров и конструкторов с помощью весьма сложного и дорогого оборудования.

Большие затраты ресурсов для проведения исследований обусловили необходимость повышения эффективности всей работы. Эффективность научных исследований в значительной степени связана с уровнем использования компьютерной техники.

Компьютеры в АСНИ используются в информационно-поисковых и экспертных системах, а также решают следующие задачи:

- управление экспериментом;

- подготовка отчетов и документации;

- поддержание базы экспериментальных данных и др.

В результате применения АСНИ возникают следующие положительные моменты:

- в несколько раз сокращается время проведения исследования;

- увеличивается точность и достоверность результатов;

- усиливается контроль за ходом эксперимента;

- сокращается количество участников эксперимента;

- повышается качество и информативность эксперимента за счет увеличения числа контролируемых параметров и более тщательной обработки данных;

- результаты экспериментов выводятся оперативно в наиболее удобной форме графической или символьной (например, значения функции многих переменных выводятся средствами машинной графики в виде так называемых «горных массивов»).

На экране одного графического монитора возможно формирование целой системы приборных шкал (вольтметров, амперметров и др.), регистрирующих параметры экспериментального объекта.

Каждая из систем АСНИ и САПР, конечно, имеет свою специфику и отличается поставленными целями и методами их достижения. Однако очень часто между обоими типами систем обнаруживается тесная связь, и их роднит не только то, что они реализуются на базе компьютерной техники. Например, в процессе проектирования может потребоваться выполнение того или иного исследования и, наоборот, в ходе научного исследования может возникнуть потребность и в конструировании нового прибора и в проектировании научного эксперимента.

Такая взаимосвязь приводит к тому, что на самом деле «чистых» АСНИ и САПР не бывает: в каждой из них можно найти общие элементы. С повышением их интеллектуальности они сближаются. В конечном счете и те и другие должны представлять собой экспертную систему, ориентированную на решение задач конкретной области.

Автоматизированные системы управления.

Термин, впервые появившийся в России в 1960-е гг. в связи с применением компьютеров и информационных технологий в управлении экономическими объектами и процессами. Это дало возможность повысить эффективность производства, лучше использовать ресурсы, избавить управленцев от выполнения нетворческих рутинных операций. Предполагалось создать иерархию автоматизированных систем управления, начиная с АСУ технологическими процессами (АСУТП) и АСУ подразделения организации и кончая общегосударственной системой управления, соединенных каналами связи.

В настоящее время в мировой практике для обозначения полнофункциональных интегрированных АСУ, используемых фирмами, применяют названия система управления ресурсами (англ. management resource planning, MRP) и управление ресурсами предприятия (англ. enterprise resource planning, ERP). Такие системы позволяют информационно поддерживать, обеспечивать все направления управленческой деятельности предприятия.

АСУ – это человекомашинные кибернетические системы, в которых умственная деятельность людей сочетается с переработкой информации, расчетами, логическими операциями, проводимыми с использованием вычислительной техники и современных средств хранения, передачи и обработки информации.

В составе АСУ выделяют:

- основную часть, в которую входят информационное, техническое и математическое обеспечение;

- функциональную часть, к которой относятся взаимосвязанные программы, автоматизирующие конкретные функции управления.

АСУ применяются в управлении производством, транспортом, строительством и многими другими экономическими объектами и процессами.

Следует отметить не только условность предложенной выше классификации ППО, но и наличие пересечений. Так, каждую конкретную экспертную систему вполне можно отнести к ППО профессионального уровня; принцип гипертекста реализован в ряде авторских систем и т.д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: