Уравнения с разделяющимися переменными.
Любое дифференциальное уравнение вида φ(x) dx = ψ(y) dy называется уравнением с разделенными переменными.
Уравнение, которое приводится к виду φ(x) dx = ψ(y) dy, называется дифференциальным уравнением с разделяющимися переменными.
Пример 1. Решить дифференциальное уравнение
.
Решение. Уравнение является уравнением с разделяющимися переменными. Приведем его к виду φ(x) dx = ψ(y) dy:

Если равны дифференциалы, то равны неопределенные интегралы
. Отсюда получаем
– общий интеграл и у = Сх – общее решение.
Пример 2. Решить дифференциальное уравнение (х2 – 1)у/ + 2ху2 = 0 и найти частное решение, удовлетворяющее начальному условию у(0) = 1.
Решение. (х2 – 1)dy = - 2ху2 dx 
.
Таким образом, получаем общий интеграл у(
) = 1.
Подставляем начальное условие у(0) = 1: 1(0 + С) = 1
С = 1.
Отсюда получаем частный интеграл у(
) = 1.
Однородные дифференциальные уравнения первого порядка.
Функция f(x, y) называется однородной функцией m-го измерения, если f(λx, λy) =
.
Дифференциальное уравнение вида
P(x, y)dx + Q(x, y)dy = 0,
где P(x, y) и Q(x, y) – однородные функции одинакового измерения, называется однородным дифференциальным уравнением первого порядка.
Уравнение P(x, y)dx + Q(x, y)dy = 0 можно привести к виду у/ = f(x, y), где f(x, y) – однородная функция нулевого измерения.
С помощью замены y = ux, где u – новая неизвестная функция, уравнение P(x, y)dx + Q(x, y)dy = 0 сводится к уравнению с разделяющимися переменными.
Пример 3. 
Решение. Так как
является однородным уравнением. Сделав замену y = ux, получим

Линейные уравнения первого порядка.
Линейным дифференциальным уравнением первого порядка называется уравнение вида a1(x)y/ + a0(x)y = b(x) или y/ + p(x)y = q(x).
Уравнение вида y/ + p(x)y = уnq(x), где n ≠ 0, n ≠ 1, называется уравнением Бернулли.
Для решения линейного уравнения можно применить подстановку
y = uv,
y/ = u/v + uv/,
где u и v – функции от х. Тогда уравнение y/ + p(x)y = q(x) примет вид
u/ + p(x)uv + uv/ = q(x),
u/ + (p(x)uv + uv/) = q(x),
u/ + u(p(x)v + v/) = q(x).
Если потребовать, чтобы выражение в скобках было равно нулю, т.е. p(x)v +v/ = 0, то из этого уравнения можно найти v, затем найдем u, а, следовательно, из y = uv найдем у.
Пример 4.
.
Решение. Это линейного уравнение первого порядка, где p(x) =
, q(x) =
. Применяем подстановку y = uv, y/ = u/v + uv/, получаем
u/v + uv/
uv =
,
u/v + (uv/
uv) =
,
u/v + u(v/
v) =
.
Приравниваем к нулю выражение в скобках, находим функцию v:
v/
v = 0
v/
v
v
ln
= 2ln
v = x2.
Пример 5. 
Решение. Сделав замену y = uv, y/ = u/v + uv/, получим u/v + uv/
= 
Сгруппируем вторе слагаемое с третьим: u/v + u(v/
)=
.
Приравнивая к нулю выражение в скобках, находим функцию v:
v/
= 0
ln
= 2ln
.
Подставив v в u/v + u(v/
)=
, находим u:
.
Отсюда
.