Ограниченность теории Бора

Теория Бора была первым серьезным шагом на пути внедрения квантовых идей в физику вещественного состояния материи. Она позволила вывести характер спектра излучения простейшего атома – водорода, но была не в состоянии предсказать распределение интенсивностей в этом спектре, а также рассчитать спектр более сложных, чем водород атомов. Такая ограниченность теории Бора объяснялась ей внутренней непоследовательностью, паллиативностью (половинчатостью). Здесь был сделан лишь один, первый “квантовый шаг”, который вскрыл плодотворность квантовой гипотезы и необходимость ее более полного воплощения в теории. Оно было последовательно осуществлено в рамках новой фундаментальной физической теории – квантовой механики.

В квантовой механике был найден такой формально - математический аппарат, из которого квантованность (дискретный спектр) мер движения частицы получалась как следствие определенных условий движения и взаимодействия, а не вводилась “вручную”, постулативно, как это вначале было осуществлено Н. Бором

51.

Энергетические зоны в кристаллах. Валентная и зона проводимости.

61. Заполнение зон: диэлектрики, проводники, полупроводники по зонной теории.

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, нео­динаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон. Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующего атомного уровня. Если, например, какой-то уровень атома полностью заполнен электронами в соответствии с принципом Паули, то образующаяся из него зона также полностью заполнена. В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электронов изолированных атомов. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис. 314. На рис. 314, а самая верхняя зона, содержащая электроны, заполнена лишь частично, т. е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны, т. е. стать свободным и участвовать в проводимости. Внутризонный переход вполне возможен, так как, например, при 1 К энергия теплового движения kT»10-4 эВ, т. е. гораздо больше разности энергий между соседними уровнями зоны (примерно 10-22эВ). Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам. Твердое тело является проводником электрического тока и в том случае, когда валентная зона перекрывается свободной зоной, что в конечном счете приводит к не полностью заполненной зоне (рис. 314, б). Это имеет место для щелочноземельных элементов, образующих II группу таблицы Менделеева (Be, Mg, Ca, Zn,...). В данном случае образуется так называемая «гибридная» зона, которая заполняется валентными электронами лишь частично. Следовательно, в данном случае металлические свойства щелочноземельных элементов обусловлены перекрытием валентной и свободной зон. Помимо рассмотренного выше перекрытия зон возможно также перераспределение электронов между зонами, возникающими из уровней различных атомов, которое может привести к тому, что вместо двух частично заполненных зон в кристалле окажутся одна целиком заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны DE. Если ширина запрещенной зоны кристалла порядка нескольких электрон-вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах (рис. 314, в). Если запрещенная зона достаточно узка (DE порядка 1 эВ), то переброс электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко либо путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию DE, и кристалл является полупроводником (рис. 314, г). Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например, для NaClDE=6 эВ), для полупроводников— достаточно узка (например, для германия DE=0,72 эВ). При температурах, близких к О К, полупроводники ведут себя как диэлектрики, так как переброса электронов в зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости, т. е. электрическая проводимость проводников в этом случае увеличивается.

Основы квантовой теории электропроводимости металла. Сверхпроводимость.

66. Электронные и дырочные полупроводники.

Рассмполупров-к, в к-м часть атомов основного полупр-ка заменена атомами в-вавалентность, к-х отлич-ся валентностью основного полупр-ка.

Пусть в 4х валент. Полупр-к внедрены атомы 5валент примеси. В случае 5валент примеси 4 эл-на этой примеси будут задействованы в образ-и межатомных связей в кристалле. 5й эл-н примеси в создании связи не участвуют, и поэтому оказ-сяслабосвяз-м в атомной примеси. При увел-и темп-рыполупр-ка отрыв-ся прежде всего этот 5й эл-н, при этом обр-сясвоб эл-ны, но дырки при этом не образ-ся. Такая примесь наз-ся донорной примесью. В случае донорной примеси проводимость полупроводника яв-ся электронной, а сам полупр-к наз-сяполупр-к n-типа. В случае донорной примеси энерг уровни нах-ся у потолка запрещ зоны. Рассм-м 4х валентный полупр-к в к-й внедрена 3х вал-я примесь. В этом случае одна из связей оказ-ся недоукомплектованной эл-ном. Эту связь может доукомплектовать эл-н из соседней связи основного полупр-ка. При этом своб-е эл-не не появ-ся. Такая примесь наз-ся акцепторной. А сам полупр-к – полупр-ком p-типа. В полупр-ке p-типа проводимость дырочная. В случае акцепторной примеси энерг уровни нах-ся у дна запрещ зоны. P-n переход представляет из себя тонкий слой на границе м/у 2мя областями одного и того же кр-ла, отлич-ся типом проводимости. В n-области осн-ми носителями яв-ся эл-ны, а в p-области – дырки. В области p-n перехода происходит диффузия во встречных направлениях дырок и эл-нов. Эл-ны попадают из n в p-область рекомбинируя с дырками. Дырки перемещаясь из p в n-область рекомбинируют с эл-нами. В рез-те этого p-n перехода оказ-ся сильно обедненной своб носителями заряда и поэтому имеет большое электрич. Сопротив-е. Одновременно на границе p-n областей возникает двойной электрич слой, образ отриц ионами акцепторной примеси в p-области, и полож ионами донорной примеси в n-области. При нек-й концентрации ионов в двойном эл слое наступает равновесие. С т зр зонной теории, равновесие наст-ет тогда, когда срав-ся уровни Ферми p и n областей. Изгибание электрич зон в области p-n перехода обусловлено тем, что потенц энергия эл-нов p области больше, чем в n и соответственно дырок n>p области. Подадим на p-n переход внешнапр-е. Если на p-область отрицнапр-е, а на n полож (обратное), то в этом случае внеш поле совпадать по напр-ю с полем запирающ слоя и в этом случае тока ч/з p-n переход не будет. Поменяем (прямое). Если внеш поле будет больше, чем поле запир слоя, то ток будет. Если внеш поле постепенно увел-ть от 0, то ток будет плавно возр-ть, достигнув макс знач-я, когда внеш поле полностью скомпенсирует поле запир слоя.

62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.

Идеальный газ из фермионов — ферми-газ — описывается квантовой статистикой Ферми — Дирака. Распределение фермионов по энергиям имеет вид

где< Ni >—среднее число фермионов в квантовом состоянии с энергией Ei, m — химический потенциал. В отличие от (235.1) m может иметь положительное значение (это не приводит к отрицательным значениям чисел < Ni >). Это распределение называется распределением Ферми — Дирака. (Ei -m)/(kT) Если е(Ei-m)/(kT)>>1, то распределения Бозе — Эйнштейна (235.1) и Ферми — Дирака (235.2) переходят в классическое распределение Максвелла — Больцмана:

(ср. с выражением (44.4)), где

Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.

Для фермионов (электроны являются фермионами) среднее число частиц в кванто­вом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов < N (E)> = f (E), где f (E) — функция распределения электронов по состояниям. Из (236.1) следует, что при Т=

функция распределения < N (E)³1, если E <m0, и < N (E)³0, если E >m0. Гра­фик этой функции приведен на рис. 312, а. В области энергий от 0 до m0 функция < N (E)> равна единице. При E=m 0она скачкообразно изменяется до нуля. Это означает, что при Т= 0К все нижние квантовые состояния, вплоть до состояния с энергией E =m0, заполнены электронами, а все состояния с энергией, большей m0, свободны. Следовательно, m0есть не что иное, как максимальная кинетическая энергия, которую могут иметь электроны проводимости в металле при 0 К. Эта мак­симальная кинетическая энергия называ­ется энергией Ферми и обозначается ЕF (EF=m0). Поэтому распределение Ферми — Дирака обычно записывается в виде

Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми. Уровню Ферми соответствует энер­гия Ферми ЕF, которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода элек­трона из металла нужно отсчитывать не от дна «потенциальной ямы», как это дела­лось в классической теории, а от уровня Ферми, т. е. от верхнего из занятых элек­тронами энергетических уровней.

64. Собственная проводимость полупроводников.

Полупроводниками являются твердые тела, которые при T=0 характеризуются полностью занятой электронами валентной зоной, отделенной от зоны проводимости сравнительно узкой (DE порядка 1 эВ) запрещенной зоной. Своим названием они обязаны тому, что их электропроводность меньше электропроводности металлов и больше электропроводности диэлектриков. В природе полупроводники существуют в виде элементов (элементы IV, V и VI групп Периодической системы элементов Менделеева) и их химических соединений. Собственными полупроводниками являются химически чистые полупроводники, а их проводимость называется собственной проводимостью. Примером собственных полупроводников могут служить химически чистые Ge, Se и др. При 0К и отсутствии других внешних факторов собственные полупроводники ведут себя как диэлектрики. При повышении же температуры электроны с верхних уровней валентной зоны I могут быть переброшены на нижние уровни зоны проводимости II (рис.315). При наложении на кристалл электрического поля они перемещаются против поля и создают электрический ток. Таким образом, зона II из-за ее частичного «укомплектования» электронами становится зоной проводимости. Проводимость собственных полупроводников, обусловленная электронами, называется электронной проводимостью или проводимостью n -типа (от лат. negative — отрицательный). В результате тепловых забросов электронов из зоны I в зону II в валентной зоне возникают вакантные состояния, получившие название дырок. Во внешнем электрическом поле на освободившееся от электрона место — дырку — может переместиться электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т. д. Такой процесс заполнения дырок электронами равносилен перемещению дырки в направлении, противоположном движению электрона, так, как если бы дырка обладала положительным зарядом, равным по величине заряду электрона. Проводимость собственных полупроводников, обусловленная квазичастицами — дырками, называется дырочной проводимостью или проводимостью р-типа (от лат. positive — положительный). Таким образом, в собственных полупроводниках наблюдаются два механизма проводимости: электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне, так как последние соответствуют электронам, возбужденным в зону проводимости. Сле­довательно, если концентрации электронов проводимости и дырок обозначить соответственно n е и np, то ne=np. (242.1) Проводимость полупроводников всегда является возбужденной, т. е. появляется только под действием внешних факторов (температуры, облучения, сильных электрических полей и т.д.).

65. Примесная проводимость полупроводников.

Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники — примесными полупроводниками. Примесная проводимость обусловлена примесями (атомы посторонних элементов), а также дефектами типа избыточных атомов (по сравнению со стехиометрическим составом), тепловыми (пустые узлы или атомы в междоузлиях) и механическими (трещины, дислокации и т. д.) дефектами. Наличие в полупроводнике примеси существенно изменяет его проводимость. Например, при введении в кремний примерно 0,001 ат.% бора его проводимость увеличивается примерно в 10б раз. Примесную проводимость полупроводников рассмотрим на примере Ge и Si, в которые вводятся атомы с валентностью, отличной от валентности основных атомов на единицу. Например, при замещении атома германия пятивалентным атомом мышьяка (рис. 319, а) один электрон не может образовать ковалентной связи, он оказывается лишним и может быть легко при тепловых колебаниях решетки отщеплен от атома, т. е. стать свободным. Образование свободного электрона не сопровождается нарушением ковалентной связи; следовательно, в отличие от случая дырка не возникает. Избыточный положительный заряд, возникающий вблизи атома примеси, связан с атомом примеси и поэтому перемещаться по решетке не может. С точки зрения зонной теории рассмотренный процесс можно представить следующим образом (рис. 319, б). Введение примеси искажает поле решетки, что приводит к возникновению в запрещенной зоне энергетического уровня D валентных электронов мышьяка, называемого примесным уровнем. В случае германия с примесью мышьяка этот уровень располагается от дна зоны проводимости на расстоянии DE0=0,013 эВ. Так как D ED<kT, то уже при обычных температурах энергия теплового движения достаточна для того, чтобы перебросить электроны примесного уровня в зону проводимости; образующиеся при этом положительные заряды локализуются на неподвижных атомах мышьяка и в проводимости не участвуют. Таким образом, в полупроводниках с примесью, валентность которой на единицу больше валентности основных атомов, носителями тока являются электроны; возникает электронная примесная проводимость (проводимость n-типа). Полупроводники с такой проводимостью называются электронными (или полупроводниками n-типа). Примеси, являющиеся источником электронов, называются донорами, а энергетические уровни этих примесей — донорными уровнями.

52.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: