Вынужденные колебания. Резонанс. Амплитуда и фаза вынужденных колебаний

Рассмотрим колебания, которые поддерживаются в системе внешней гармонической силой F = F 0Cosw t. Такие колебания называются вынужденными.

Обратимся вновь к пружинному маятнику. Вспомним уравнения движения этого осциллятора:

— уравнение собственных незатухающих колебаний. В системе действует одна упругая сила F упр = –k x;

— собственные затухающие колебания. В системе появилась сила вязкого сопротивления, пропорциональная скорости .

В случае вынужденных колебаний кроме двух названных сил — упругой и силы сопротивления, на систему действует ещё одна сила: F = F 0Cosw t.

— дифференциальное уравнение вынужденных колебаний пружинного маятника. Это уравнение движения принято записывать так:

.

Введя знакомые обозначения и , представим уравнение движения осциллятора окончательно в таком виде:

. (13.14)

Опыт показывает, что под действием гармонического возмущающего усилия F = F 0Cosw t осциллятор совершает гармонические колебания с частотой вынуждающей силы w:

х = A Cos(w t + a). (13.15)

Если частота w известна, то задача сводится к определению амплитуды вынужденных колебаний А и начальной фазы a.

Продифференцировав функцию (13.15), подставим ее в уравнение (13.14):

.

Теперь воспользуемся известными тригонометрическими формулами для косинуса и синуса суммы двух углов:

Это уравнение представляет собой сумму двух гармонических слагаемых

а Cos w t + b Sin wt = 0.

Последнее равенство возможно в единственном случае, если постоянные во времени a и b равны нулю: а = 0, b = 0. Это означает, что справедливы следующие уравнения:

, (13.16)

. (13.17)

Эти два уравнения содержат только две неизвестные величины: амплитуду А и фазу a вынужденного колебания. Для отыскания амплитуды А можно домножить уравнение (13.16) на , а уравнение (13.17) — на Cosa. Вычтя теперь из первого уравнения второе, получим Sina:

,

. (13.18)

Воспользовавшись этим результатом в уравнении (13.17), найдем Cosa:

. (13.19)

Возведем уравнения (13.18) и (13.19) в квадрат и сложим:

Последнее уравнение решим относительно искомой амплитуды колебаний А:

. (13.20)

Фазовый сдвиг смещения x относительно возмущающего усилия F найдём непосредственно из уравнения (13.17):

. (13.21)

Обратимся к анализу полученных результатов.

1) Амплитуда вынужденных колебаний прямо пропорциональна амплитуде возмущающего усилия F 0.

2) Если w = 0 — случай приложения статической нагрузки F 0, смещение груза будет определяться жёсткостью пружины k:

.

3) При высоких частотах внешнего усилия (w→¥), амплитуда колебаний А →0.

4) Для отыскания частоты wрез, при которой амплитуда достигает наибольшего значения А рез, нужно найти минимум выражения, стоящего под корнем в знаменателе уравнения (13.20). Продифференцировав это выражение по w, и приравняв результат нулю, получим условие, определяющее wрез:

.

Отсюда следует, что резонансная частота wрез меньше частоты собственных незатухающих колебаний w0:

. (13.22)

Используя это значение в (13.20), рассчитаем резонансную амплитуду:

. (13.23)

5) Если вязкое сопротивление отсутствует, коэффициент затухания d = = 0 и резонансная амплитуда устремляется в бесконечность. При этом условии резонансная частота, как следует из (13.22), равна частоте собственных незатухающих колебаний осциллятора wрез = w0.

6) С увеличением коэффициента затухания d, резонансная частота и амплитуда колебаний уменьшаются.

Все эти закономерности графически представлены на рис. 13.4.

Рис. 13.4

7) При слабом затухании, когда , резонансная амплитуда равна

.

Разделим это выражение на — смещение под действием постоянной силы:

.

Таким образом, добротность осциллятора численно равна отношению резонансной амплитуды к смещению под действием постоянной силы.

8) На рис. 13.5 представлена зависимость фазового сдвига вынужденных колебаний и вынуждающей силы — график функции (13.21). С увеличением частоты вынуждающего усилия a растет, меняясь от 0 до p. В резонансе фазовый сдвиг равен . Эта зависимость a = a(w) меняется с изменением коэффициента затухания.

Рис. 13.5

Лекция 14 «Элементы специальной теории относительности»

План лекции.

1. Постулаты специальной теории относительности. Преобразования Лоренца.

2. Динамика релятивистского движения.

3. Закон эквивалентности массы и энергии.

Альберт Эйнштейн
В классической механике Ньютона мы изучали законы движения макротел со скоростями, далекими от скорости света (с = 3 × 108 м/с). Такие движения называются нерелятивистскими (классическими), в отличие от релятивистских движений, скорость которых соизмерима со скоростью света. Теоретической основой релятивистской механики является специальная (частная) теория относительности (СТО). Предваряя рассмотрение основных положений этой теории, отметим два важных момента:

1) Релятивистская механика включает в себя и классическую механику как предельный случай движения с малыми скоростями.

2) Все положения СТО имеют сегодня надежное экспериментальное подтверждение.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: