Позиционные регуляторы

Позиционные регуляторы работают по принципу «включено-выключено». Их реализация осуществляется, например, с помощью контактных и бесконтактных релейных элементов.

Позиционные регуляторы бывают двух-, трех- и многопозиционными.

 
 

Рис.7. Структурная схема (а) и статические характеристики без зоны нечувствительности (б) и с зоной нечувствительности (в) двух позиционного регулятора; ДР — двухпозиционный регулятор

На рис. 7 приведены структурная схема и статические характеристики двухпозиционных регуляторов. Двухпозиционные регуляторы настраиваются таким образом, чтобы значения m и e отсчитывались в приращениях от условного равновесного состояния объекта регулирования, соответствующего расчетным значениям m0 и e0, принятым за начало отсчета. При этом статическая характеристика двухпозиционного регулятора без зоны нечувствительности примет вид, представленный на рис. 7 б, с зоной нечувствительности–на рис. 7 в.

       
   
 
 


Рис. 8. Статические характеристики трехпозиционных регуляторов без зон нечувствительности (а) и с зонами нечувствительности (б)

Аналитическая статическая характеристика двухпозиционного регулятора без зоны нечувствительности запишется в виде:

m=m1 при e>0;

m=-m2 при e<0, (2.2)

а с зоной нечувствительности–в виде

m=m1 при e ³ а;

m=-m2 при e≤- а;

m=m1 при - а <e< а и de/dt <0;

m=-m2 при - а <e< а и de/dt>0. (2.3)

Из (2.2) и (2.3), а также из рис. 7, б и в следует, что двухпозиционные регуляторы постоянно оказывают на объект регулирования воздействия, отличные от их значений, необходимых для равновесного состояния системы (при e=0). В результате этого автоматическая система с двухпозиционным регулятором будет работать в автоколебательном режиме в окрестностях ее равновесного состояния.

На рис.9 дан пример структурной схемы многопозиционного регулятора и его статических характеристик без зон неодно­значности и с зонами неоднозначности.

Из структурной схемы на рис.9, а многопозиционного регулятора следует, что его можно представить как несколько двух­позиционных регуляторов с различными установками их срабатывания, соединенными последовательно.

Отклонение регулируемой величины от заданного значения ε поступает на входы всех двухпозиционных регуляторов. Основ­ной двухпозиционный регулятор ДРо сра­батывает при изменении знака ε. Например, при ε > 0 регулятор ДРо срабатывает и на его выходе появляется регулирующий сиг­нал μо. Если этого регулирующего воздей­ствия оказывается недостаточно и отклоне­ние продолжает возрастать, то при ε Δg1>0 срабатывает регулятор ДР и на выходе многопозиционного регулятора по­является дополнительное регулирующее воз­действие μ 1б. Результирующее воздействие на выходе будет равно μ=μо1Б. В общем случае таких дополнительных регуляторов может быть несколько и при возрастании ε результирующее регулирующее воздействие может быть равно

где n – число двухпозиционных регуляторов ДРIБ, включившихся при возрастании ε.

Если при очередном включении i -го двухпозиционного регулятора отклонение ε начнет уменьшаться, то регуляторы поочередно в обратной последовательности начнут отключаться.

Аналогично работает многопозиционный регулятор при отклонении ε в обратную сторону, т.е. при ε<0.

Результирующее воздействие многопозиционного регулятора при этом будет равно

где m – число двухпозиционных регуляторов ДР jM, включившихся при уменьшении ε в сторону ε<0.

Статическая характеристика многопозиционного регулятора без зон нечувствительности составляющих двухпозиционных регуляторов представлена на рис.9, б, а при наличии зон неоднозначности – на рис.9, в.

 
 

Рис. 9. Пример структурной схемы (а) и статических характеристик без зон неодно­значности (б) и с зонами неоднозначности (в) многопозиционного регулятора

Лекция 7

ПРОЕКТИРОВАНИЕ ПОЗИЦИОННЫХ

И СЛЕДЯЩИХ СИСТЕМ ПЕРЕМЕННОГО ТОКА


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: