double arrow

Матрица и граф отношения эквивалентности


Элементы, принадле­жащие некоторому классу эквивалентности, попарно эквивалентны между собой, а их сечения совпадают. Следовательно, столбцы матрицы отношения эквивалентности для элементов одного класса одинаковы и содержат единицы во всех строках, которые соответ­ствуют этим элементам. Так как классы эквивалентности не пере­секаются, то в столбцах различных классов не будет единиц в оди­наковых строках.

Расположим элементы множества так, чтобы в каждом классе эквивалентности принадлежащие ему элементы стояли рядом. Тогда единичные элементы матрицы отношения эквивалентности образуют непересекающиеся квадраты, диагонали которых располагаются по главной диагонали матрицы. Например, для разбиения на классы эквивалентности имеем:

 
         
         
         
             
       
       
       
       

На рис. 4.1 изображен граф отношения эквивалентности, матрица которого приведена выше. Каждому классу эквива­лентности соответствует отдель­ная часть графа, которая предста­вляет собой полный направленный граф на множестве ее вершин.




рис.4.1. Граф отношения эквивалентности

4.5. Разбиение и отображение. Разбиение множества на классы можно связать с отображением f: Х ® У, ставящим каждому элементу из Х в соответствие один и только один элемент из У (рис. 4.2).

    рис.4.2. Отображение, порождающее отношение эквивалентности

Собирая в один класс все те элементы из X, образы кото­рых в У совпадают, приходим к некоторому разбиению на непере­секающиеся подмножества . Каждое подмножество характеризуется соответствующим ему образом и явля­ется классом эквивалентности.

Обратно, если задана некоторая совокупность классов эквивалентности множестваX, то каждому элементу хÎХ можно поставить в соответствие тот класс Xi, к которому принадлежит х. В результате получаем отображение множества Х на множество классов .Итак, любое отображение f: Х ® У порождает отношение эквивалентности на множестве X, причем ~, если и только если . Образы классов эквивалентности могут служить эталонами и образуют в совокупности систему представителей.








Сейчас читают про: