Идеальные частотные фильтры

Методика расчетов НЦФ

В общем виде методика расчётов НЦФ включает:

1. Задание идеальной частотной передаточной функции фильтра.

2. Расчет функции отклика идеального фильтра (обратное преобразование Фурье передаточной функции фильтра).

3. Ограничение функции отклика до определенного количества членов, при этом на передаточной характеристике фильтра возникает явление Гиббса.

4. Для нейтрализации явления Гиббса производится выбор весовой функции и расчет ее коэффициентов, на которые умножаются коэффициенты функции отклика фильтра. Результатом данной операции являются значения коэффициентов оператора фильтра (импульсный отклик фильтра). По существу, операции 3 и 4 представляют собой усечение ряда Фурье динамического (временного) представления передаточной функции фильтра определенной весовой функцией (умножение на весовую функцию).

5. С использованием полученных значений коэффициентов оператора фильтра производится построение его частотной характеристики и проверяется ее соответствие поставленной задаче.

Идеальным полосовым фильтром называется фильтр, имеющий единичную амплитудно-частотную характеристику в полосе от определенной нижней частоты wн до определенной верхней частоты wв, и нулевой коэффициент передачи за пределами этой полосы (для цифровых фильтров - в главном частотном диапазоне).

Импульсная реакция фильтра (коэффициенты оператора) находится преобразованием Фурье заданной передаточной функции H(w). В общем случае:

h(nDt) = (1/2p)H(w) exp(jwnDt) dw.

Для получения вещественной функции импульсного отклика фильтра действительная часть передаточной функции должна быть четной, а мнимая - нечетной. Цифровые фильтры задаются в главном частотном диапазоне, границы которого (частота Найквиста wN) определяются интервалом дискретизации данных (wN = p/Dt), подлежащих фильтрации, и соот- ветственно определяют интервал дискретизации оператора фильтра (Dt = p/wN). Для фильтров с нулевым фазовым сдвигом мнимая часть передаточной функции должна быть равна нулю, при этом оператор фильтра определяется косинусным преобразованием Фурье:

h(nDt)= (1/p)H(w) cos(npw/wN) dw, n = 0,1,2,... (5.2.1)

Для идеального полосового фильтра H(w)=1 в полосе частот от wн до wв, и интеграл (5.2.1) вычисляется в этих пределах. Идеальные фильтры низких и высоких частот можно считать частными случаями идеальных полосовых фильтров с полосой пропускания от 0 до wв для низкочастотного и от wн до wN для высокочастотного фильтра.

При интервале дискретизации данных Dt, условно принимаемым за 1, главный частотный диапазон передаточных функций ограничивается значением частоты Найквиста от -p до p. Если на практике интервал дискретизации данных в физических единицах отличается от 1, то это сказывается только на изменении масштаба частотной шкалы передаточных функций.

Пример 1. Dt = 0.1 сек. fN = 1/2Dt = 5 Гц. wN = p/Dt = 10 p.

Пример 2. Dx = 10 метров. fN = 0.05 м-1. wN= 0.1 p.

Во всех дальнейших выражениях значение Dt, если это специально не оговорено, будем принимать равным 1.

При H(w)=A=1 в полосе пропускания wн -wв, и H(w)=0 за ее пределами, для идеальных симметричных полосовых НЦФ из (5.2.1) в общем виде получаем:

h(n) = (А/p) [wв sinc(nwв) - wн sinc(nwн)], (5.2.2)

ho = (wв - wн)/p, h(n) = (sin nwв - sin nwн)/(np).

где sinc(nw) = sin(nw)/(nw) - функция интегрального синуса (функция отсчетов), бесконечная по координате w.

Рис. 5.2.1. Входные сигналы. Рис. 5.2.2. Спектр сигнала и границы фильтра.

На рис. 5.2.1 приведен пример сигнала однотональной балансной амплитудной модуляции (чистого – вверху, и с наложенными шумами внизу, мощность шумов равна мощности сигнала). Если информация заключена в частоте и амплитуде модулирующего сигнала, то полосовой фильтр выделения сигнала из шумов, спектр которого для одной модулирующей частоты приведен на рис. 5.2.2, в идеальном случае должен иметь плоскую частотную характеристику в границах возможных вариаций модулирующей частоты (от wн до wв).

Рис. 5.2.3. Оператор фильтра.

На рис. 5.2.3 приведен оператор полосового фильтра, вычисленный по (5.2.2) для приведенных выше условий, с ограничением по числу коэффициентов оператора до N=100. Как видно из рисунка, оператор затухает достаточно медленно и явно усечен, что должно сказаться на форме частотной харак- теристики фильтра. Все дальнейшие вычисления будут проводиться на продолжении данного примера.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: