Получение. В промышленности

Образуется в газогенераторах при пропускании воздуха через раскаленный уголь:

C + O2 = CO2,

CO2 + C = 2CO.

В лаборатории. Получается при термическом разложении муравьиной или щавелевой кислоты в присутствии концентрированной серной кислоты:

HCOOH = H2O + CO,

H2C2O4 = CO + CO2 + H2O.

Карбонильные комплексы. Комплексные соединения, в которых лигандом является карбонил – монооксид углерода СО, называются карбонильными. Степень окисления металла в комплексных карбонилах, как правило, нулевая.

Карбонильные комплексы в обычных условиях – кристаллические вещества или жидкости, легколетучие и обладающими низкими температурами плавления и кипения.

Карбонильные комплексы d-элементов, как правило, диамагнитны. Они практически нерастворимы в воде и относятся к категории неэлектролитов, но хорошо растворимы в органических растворителях; так же, как монооксид углерода, они весьма токсичны.

Значения координационного числа центральных атомов в карбонильных комплексах можно определить с помощью правила Сиджвика. В соответствии с этим правилом при образовании карбонильных (и не только карбонильных) комплексов вокруг металла создается устойчивая внешняя 18-электронная оболочка из s-, p- и d-электронов комплексообразователя и электронных пар лигандов.

Например, атом железа(0) имеет конфигурацию [Ar] 3d64s2, т.е. восемь внешних (валентных) электронов. Для образования устойчивой 18 электронной конфигурации недостает (18 – 8) = 10 электронов. Эти 10 электронов (5 электронных пар) центральный атом Fe0 получает от пяти молекул CO, каждая из которых является донором одной электронной пары.

Отсюда состав карбонильного комплекса железа [Fe(CO)5] (пентакарбонилжелезо).

Точно так же для никеля(0) с конфигурацией [Ar] 3d84s2 до устойчивой конфигурации не будет хватать (18 – 10) = 8 электронов, а число карбонильных лигандов составит 8/2 = 4. Формула комплекса [Ni(CO)4] (тетракарбонилникель).

Более сложный для рассмотрения случай – карбонильный комплекс кобальта(0). Центральному атому Co0 с электронной конфигурацией [Ar] 3d74s2 до устойчивой конфигурации не будет хватать (18 – 9) = 9 электронов. Число предполагаемых карбонильных лигандов: 9/2 = 4,5(?!).

Так как каждый карбонильный лиганд может передать атому кобальта только пару электронов, то вначале будет получаться неустойчивый комплексный радикал [· Co(CO)4], содержащий 17 электронов, в том числе один неспаренный электрон у атома кобальта. В этом случае образование 18-электронной оболочки происходит путем димеризации – объединения двух радикалов связью металл - металл с получением комплекса состава [Co2(CO)8].

Помимо димеризации, образование устойчивой 18-электронной оболочки может быть достигнуто при образовании карбонильного комплексного иона. Например, для ванадия(0) с электронной конфигурацией [Ar] 3d34s2 до устойчивой конфигурации не будет хватать (18 – 5) = 13 электронов. Карбонильные лиганды передадут атому ванадия 6 ´ 2 = 12 электронов, и получится неустойчивый комплекс – радикал состава [· V(CO)6], содержащий 17 электронов. Упрочнение комплекса за счет превращения электронной оболочки в 18-электронную будет достигаться превращением ванадия(0) в ванадий(-I) при образовании гексакарбонилванадата(-I) калия состава K[V(CO)6].

Карбонильные комплексы часто получают прямым синтезом:

Fe(т) + 5 CO(г) = [Fe(CO)5](ж) (при 200 °С и 150 атм)

При нагревании карбонилы разлагаются:

[Fe(CO)5](ж) = Fe(т) + 5 CO(г) (при 300 °С)

Карбонильные комплексы, растворенные в тетрахлориде углерода, энергично взаимодействуют с галогенами, а кислоты реагируют с карбонилами, как с соответствующими металлами:

2 [Fe(CO)5] + 3 Cl2 = 2 FeCl3 + 10 CO

[Ni(CO)4] + Br2 = NiBr2 + 4 CO

[Fe(CO)5] + H2SO4 = FeSO4 + 5 CO + H2

Фосге́н (дихлорангидрид угольной кислоты) — химическое вещество с формулой CCl2O, при нормальных условиях — бесцветный газ с запахом прелого сена. Синонимы: оксид-дихлорид углерода, карбонилхлорид, хлорокись углерода.

Обладает удушающим действием. Использовался в Первую мировую войну как боевое отравляющее вещество.

Свойства tкип= 8,2 °C, tпл= −118 °C, плотность в жидкой фазе 1,403 г/см³ (при температуре кипения), в газовой фазе 4,248 кг/м³ (15 °C, 1 бар)[1]; плохо растворим в воде, хорошо — в органических растворителях. Фосген представляет собой бесцветный газ, который ниже 8,2 °C конденсируется в бесцветную жидкость. Его запах напоминает прелые фрукты или сено. Технический продукт имеет слегка желтоватую или красновато-жёлтую окраску. Фосген примерно в 3,5 раза тяжелее воздуха. Из-за высокого давления пара он даже при низких температурах обладает большой летучестью. Фосген можно легко конденсировать сжатием, его критическая температура составляет 183 °C, критическое давление 56 кгс/см². В холодной воде фосген растворим мало −0,9 %. Он легко растворим в органических растворителях, например в бензине, толуоле, ксилоле, уксусной кислоте, хлороформе.

При обычной температуре фосген — стабильное соединение. При сильном нагревании он частично разлагается на хлор и окись углерода. Выше 800 °C он полностью диссоциирует. Количество ядовитых продуктов разложения при взрыве ничтожно, поэтому возможно применение фосгена во взрывных боеприпасах.

При хранении фосгена в стальных ёмкостях, например при длительном нахождении в минах, образуется пентакарбонил железа Fe(CO)5. Это — красновато-жёлтая жидкость, тяжелее фосгена, и разлагаемая на свету фотокаталитически с образованием ядовитой окиси углерода. Фосген почти не гидролизуется парами воды, поэтому концентрация

фосгена, созданная в воздухе, заметно изменяется лишь через долгое время. При высокой влажности воздуха облако фосгена за счёт частичного гидролиза может приобрести беловатый отсвет.

Энергично реагирует с аммиаком с образованием карбамида и хлорида аммония:

Данная реакция используется для экспресс-обнаружения утечек фосгена — смоченный раствором аммиака тампон в присутствии фосгена начинает заметно выделять белый дым из кристалликов хлорида аммония. Обнаружению фосгена этим способом мешает хлор, который с аммиаком также образует дым хлорида аммония.

ЦИАНИДЫ, неорг. соединения, содержащие группу CN. Различают простые цианиды- соли синильной кислоты HCN и нек-рые др. и комплексные. По характеру хим. связи между элементом и ионом CN- делятся на ионные, ковалентные и координационные. Цианидами наз. также псевдогалогенидами. Орг. соед., содержащие группу CN, образуют два ряда производных - нитрилы и изонитрилы. Молекулы простых цианидов относятся к нежестким молекулам. Цианиды аммония, щелочных и щел.-зем. металлов - ионные соед., хорошо раств. в воде, a NaCN и NH4CN раств. в этаноле. При повышенной т-ре цианиды щелочных и щел.-зем. металлов полностью гидролизуются. Водные р-ры цианидов вследствие гидролиза обладают сильноосновной р-цией. При технол. использовании для стабилизации в р-ры вводят в небольших концентрациях щелочь. При сплавлении или кипячении с серой или полисульфидами цианиды превращаются в тиоцианаты. Цианиды щелочных металлов легко окисляются до цианатов при нагр. на воздухе или с легко восстанавливаемыми оксидами. При взаимод. цианидов щелочных и щел.-зем. металлов с галогенами образуются галогенцианиды. Действием SO2 при низкой т-ре на KCN получают цианосульфит калия KSO2CN, р-р к-рого восстанавливает соли Ag и Аu. Цианиды щелочных металлов не изменяются при прокаливании без доступа воздуха, а цианиды щел.-зем. (особенно Са) частично превращаются в цианамиды. Цианиды щелочных металлов получают взаимод. щелочей с HCN, цианиды щел.-зем.- обменными р-циями и др. способами.

Цианиды подгруппы Zn - диамагнитные в-ва. Получают их при введении ионов CN- в р-р соли соответствующего металла. Наиб. устойчив цианиды ртути Hg(CN)2. Он хорошо раств. в воде (в отличие от цианидов др. тяжелых металлов), этаноле, жидком NH3.

Среди цианидов р- и d-элементов известны цианиды подгруппы бора -A1(CN)3, A1H(CN)2, In(CN)3 и др., подгруппы углерода -Ge(CN)4, Pb(CN)2 и др., азота - P(CN)'3, As(CN)3, Sb(CN)3, кислорода - S(CN)2, Se(CN)2, Te(CN)2 и др., а также цианиды галогенов (см. Галогенцианиды). Кроме этого, p- и d-металлы образуют разл. цианидные ацидокомплексы - гомо- и гетеролигандные (табл.).

Цианиды металлов гр. Iб - CuCN, AgCN и др., не раств. в воде, образуются при введении ионов CN- в водные р-ры солей. Дают устойчивые гомолигандные комплексные соед., содержащие от 2 до 4 лигандов CN-, а также гетеролигандные комплексные соединения. Для металлов гр. IIIб известны цианиды лантаноидов состава M(CN)3, где М-Се, Pr, Sm, Eu, Но, Yb и M(CN)2, где M-Sm, Eu, Yb, а также комплексные цианиды урана, напр. K2[UO2(CN)4]. Простые цианиды металлов подгруппы Ti неизвестны.

Цианид натрия, цианистый натрий, NaCN — натриевая соль синильной кислоты.

Свойства. Бесцветные гигроскопичные кристаллы, хорошо растворимые в воде (32,4 % при 10 °C, 45,0 % при 35 °C). Кристаллизуется в виде NaCN•2H2O, выше 34,7 °C — в безводной форме. В водных растворах гидролизуется:

Как и KCN, цианид натрия легко образует комплексные соединения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: