double arrow

Кинетическая энергия и работа при вращении тела



Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси. Если мысленно разбить это тело на n точек массами m1, m2, …, mn , находящихся на расстояниях r1, r2, …, rn от оси вращения, то при вращении они будут описывать окружности и двигаться с различными линейными скоростями v1, v2, …, vn. Так как тело абсолютно твердое, то угловая скорость вращения точек будет одинакова:

Кинетическая энергия вращающегося тела есть сумма кинетических энергий его точек, т.е.

Учитывая связь между угловой и линейной скоростями, получим:

(4.9)

Сопоставление формулы (4.9) с выражением для кинетической энергии тела, движущегося поступательно со скоростью v, показывает, что момент инерции является мерой инертности тела во вращательном движении.

Если твердое тело движется поступательно со скоростью v и одновременно вращается с угловой скоростью ω вокруг оси, проходящей через его центр инерции, то его кинетическая энергия определяется как сумма двух составляющих:

(4.10)

где vc – скорость центра масс тела; Jc - момент инерции тела относительно оси, проходящей через его центр масс.

Моментом силы относительно неподвижной осиz называется скалярная величина Mz, равная проекции на эту ось вектора момента силы, определенного относительно произвольной точки 0 данной оси. Значение момента Mz не зависит от выбора положения точки 0 на оси z.




Если ось z совпадает с направлением вектора , то момент силы представляется в виде вектора, совпадающего с осью:

Найдем выражение для работы при вращении тела. Пусть сила приложена к точке В, находящейся от оси вращения на расстоянии r (рис. 4.6); α – угол между направлением силы и радиусом-вектором . Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела.

При повороте тела на бесконечно малый угол точка приложения В проходит путь , и работа равна произведению проекции силы на направление смещения на величину смещения:

Учитывая, что можно записать где Mz - момент силы относительно оси вращения. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идет на увеличение его кинетической энергии:

где Тогда , или Учитывая, что получим

(4.11)

Уравнение (4.11) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.





Сейчас читают про: