Свойства функций, непрерывных в точке

Поскольку точки непрерывности функции задаются условием , то часть свойств функций, непрерывных в точке , следует непосредственно из свойств пределов. Сформулируем их в виде следующей теоремы.

Теорема 3.1 Пусть функции и непрерывны в точке . Тогда функции , , непрерывны в точке . Если , то функция также непрерывна в точке .

Доказательство. Оно сразу же следует из теорем о пределах 2.8, 2.9, 2.10 и следствия 2.5.

Как непосредственное следствие этой теоремы получается следующее

Предложение 3.3 Рассмотрим множество всех функций, определённых в некоторой фиксированной окрестности точки и непрерывных в этой точке. Тогда это множество является линейным пространством, то есть замкнуто относительно сложения и умножения на постоянные:

Доказательство. Действительно, постоянные и -- это непpеpывные функции (в любой точке); по пpедыдущей теоpеме тогда непpеpывны в точке пpоизведения и . Но тогда по этой же теоpеме непpеpывна в точке и сумма .

Теорема 3.2 Пусть функции и таковы, что существует композиция , . Пусть функция непрерывна в точке , а функция непрерывна в соответствующей точке . Тогда композиция непрерывна в точке .

Доказательство. Заметим, что равенство означает, что при будет . Значит,

(последнее равенство следует из непрерывности функции в точке ). Значит,

а это равенство означает, что композиция непрерывна в точке .

Заметим, что, очевидно, в предыдущих двух теоремах можно было бы заменить базу на односторонние базы или и получить аналогичные утверждения для непрерывности слева или справа:

Теорема 3.3 Пусть функции и непрерывны слева (справа) в точке . Тогда функции , , непрерывны слева (соотв. справа) в точке . Если , то функция также непрерывна слева (спpава) в точке .

Теорема 3.4 Пусть функция непрерывна слева (справа) в точке , а функция непрерывна в точке . Тогда композиция непрерывна слева (соотв. справа) в точке .

Точки разрыва и их классификация
Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной. Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом. Если односторонний предел (см. выше) , то функция называется непрерывной справа.
 

х0

Если односторонний предел (см. выше) , то функция называется непрерывной слева.

 

х0

Определение. Точка х0 называется Точкой разрыва Функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке.

Определение. Точка х0 называется Точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее.

Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют Устранимой Точкой разрыва, но подробнее об этом поговорим ниже.

Определение. Точка х0 называется Точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.

Свойства функций непрерывных на отрезке:

1. Теорема Вейерштрасса. Если функция непрерывна на отрезке, то она достигает на этом отрезке свои наибольшее и наименьшее значения.

2. Непрерывная на отрезке функция является ограниченной на этом отрезке.

3. Теорема Больцано-Коши. Если функция является непрерывной на отрезке и принимает на концах этого отрезка неравные между собой значения, то есть , , то на этом отрезке функция принимает и все промежуточные значения между и .

4. Если функция , которая непрерывна на некотором отрезке , принимает на концах отрезка значения разных знаков, то существует такая точка такая, что .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: