Усилители

Для увеличения мощности сигналов с сохранением их формы используют усилители. Принцип действия усилителей основан на преобразовании энергии источника питания в энергию сигнала. Основную функцию преобразователя энергии выполняет усилительный элемент, способный с помощью небольшого входного сигнала управлять большой энергией источника питания. В качестве усилительного элемента используются электронные лампы, транзисторы, параметрические устройства и др. Усилительный элемент в сочетании с необходимыми для его работы элементами (сопротивлениями, конденсаторами, катушками индуктивности) представляет собой одну ступень усиления, называемую усилительным каскадом.

В зависимости от характера нагрузки и назначения различают усилители напряжения, тока или мощности. Однако такое разделение условно, так как в любом случае в конечном счете усиливается мощность сигнала.

Среди большого разнообразия типов усилителей, классификацию которых осуществляют по различным признакам [12], наибольший интерес с позиций спектрального анализа представляют усилители с ярко выраженными частотными свойствами. Среди них особое внимание заслуживают широкополосные (импульсные) усилители и узкополосные (избирательные) усилители.

К широкополосным усилителям относят усилители, ширина полосы пропускания которых соизмерима со средней частотой этой полосы. Они предназначены для усиления импульсных сигналов различной формы, в частности, телевизионных видеосигналов. В структуре этих усилителей отсутствуют резонансные цепи. Заметим, что усилители звуковых частот также являются широкополосными, однако их выделяют в отдельный класс.

Узкополосные усилители работают в узкой полосе частот и делятся на резонансные и полосовые усилители. В резонансных усилителях нагрузкой служит колебательный контур, в полосовых – полосовой фильтр.

Рассмотрим схемы и частотные характеристики этих усилителей.

5.6.1. Широкополосный усилитель

На рис. 5.6 изображены схема усилителя на полевом (МДП) транзисторе с общим истоком и его эквивалентная схема.

Назначение элементов схемы усилителя:

конденсаторы и – разделительные, блокируют протекание постоянного тока, обеспечивая прохождение только переменных составляющих входного и выходного сигналов;

резисторы и образуют делитель напряжения для подачи на затвор транзистора напряжения рабочей точки;

резистор и конденсатор – цепь отрицательной обратной связи для термостабилизации режима работы усилителя по постоянному току;

сопротивление – нагрузка усилителя;

емкость – паразитная емкость, которая проявляется на высоких частотах.

Усилитель нагружен на параллельно соединенные сопротивление и емкость . Такую нагрузку называют апериодической. Поэтому такие усилители часто называют апериодическими.

Рис. 5.6. Апериодический усилитель (а) и его эквивалентная схема (б)

Процесс усиления входного сигнала данным усилителем с использованием сток-затворной характеристики транзистора поясняется рис. 5.7.

Рис. 5.7. Графическая иллюстрация процесса усиления

При отсутствии входного напряжения (в режиме покоя) напряжение на затворе равно напряжению смещения, в цепи стока проходит ток покоя . Напряжение на стоке постоянно и равно . Выходное напряжение равно нулю.

При поступлении на вход усилителя входного сигнала на затворе транзистора будет действовать напряжение . Ток стока начинает изменяться по синусоидальному закону , при этом напряжение на стоке равно

.

Постоянная составляющая не проходит через разделительный конденсатор и на выходе усилительного каскада будет напряжение

.

При определенном значении сопротивления и соответствующей крутизне сток-затворной характеристики транзистора амплитуда выходного напряжения может превышать амплитуду входного сигнала . Следует обратить внимание на то, что выходной сигнал в схеме с общим истоком находится в противофазе входному сигналу.

Определим частотный коэффициент передачи усилителя, пользуясь его эквивалентной схемой (см. рис. 5.6,б). На этой схеме изображена эквивалентная схема транзистора, содержащая следующие параметры:

емкость (сток-исток) – межэлектродная выходная емкость транзистора;

сопротивление – входное сопротивление транзистора;

усилительные свойства транзистора отражены генератором тока с внутренним сопротивлением и крутизной вольт-амперной (сток-затворной) характеристики .

Делитель в цепи затвора представлен сопротивлением , нагрузка – сопротивлением .

Анализ эквивалентной схемы усилителя позволяет записать выражение для частотного коэффициента передачи усилителя следующим образом:

.

. (5.6)

В этом выражении

– частотный коэффициент передачи входной цепи, состоящей из разделительной емкости и сопротивления делителя , причем – постоянная времени входной цепи;

– частотный коэффициент передачи выходной цепи, состоящей из паразитной емкости , выходной емкости транзистора и сопротивления нагрузки , причем – постоянная времени выходной цепи.

При получении данного выражения учитывалось, что у полевых транзисторов , .

Таким образом,

.

Из физических соображений очевидно, что . Тогда

.

Здесь – максимальный коэффициент усиления.

Анализ этого выражения целесообразно производить отдельно для нижних, средних и верхних частот.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: