Рассмотрим основные свойства преобразования Фурье.
Линейность. Рассмотрим функции
и
, имеющие спектры
и
:
(12)
Тогда спектр их линейной комбинации будет:
(13)
Задержка во времени. Считаем, что известен спектр
сигнала 
(14)
Рассчитаем спектр сигнала, сдвинутого во времени:
. Обозначим аргумент функции новой переменной
, тогда
и 
(15)
Получили, что задержка сигнала на время
приводит к умножению спектра на
.
Изменение масштаба. Считаем, что известен спектр
сигнала
, как через
выражается спектр сигнала
. Вводим новую переменную
, делаем замену переменной интегрирования
.
(16)
Умножение на
. Как и в предыдущем случае, считаем, что известен спектр
сигнала
. Найдем спектр этого сигнала, умноженного на
.
(17)
Таким образом, умножение сигнала на
приводит к смещению спектра на
.
Спектр производной. В данном случае ключевым моментом является абсолютная интегрируемость функции. Из того, что интеграл от модуля функции должен быть ограничен, следует, что на бесконечности функция должна стремиться к нулю. Интеграл от производной функции берётся по частям, получившиеся внеинтегральные слагаемые равны нулю, так как на бесконечности функция стремится к нулю.
(18)
Спектр интеграла. Найдем спектр сигнала
. Причём будем считать, что
, то есть у сигнала отсутствует постоянная составляющая. Это требование необходимо, чтобы внеинтегральные слагаемые были равны нулю, когда интеграл берётся по частям.
(19)
Теорема о свёртке. Известно, что
и
спектры функций
и
соответственно. Требуется выразить спектр свертки
через
и
. Для этого в интеграле Фурье от свёртки у одной из функций выполним замену переменой
, тогда в показателе экспоненты можно сделать замену
. В результате такой замены двукратный интеграл будет равен произведению двух интегралов Фурье.
(20)
Преобразование Фурье свёртки двух сигналов даёт произведение спектров этих сигналов.
Произведение сигналов. Известно, что
и
– спектры функций
и
соответственно. Требуется выразить спектр произведения
через спектры
и
. Подставим в интеграл Фурье вместо одного из сигналов, например
, его выражение через обратное преобразование Фурье, а потом поменяем порядок интегрирования.
(21)
Спектр произведения сигналов есть свёртка спектров этих сигналов.