Раздел 1. Организация жизни на Земле. Биология клетки. Размножение. Генетика

1. Определение понятия «жизнь». Гипотезы происхождения жизни. Основные этапы возникновения и развития жизни. Субстрат жизни.

Жизнь — активная форма существования материи, совокупность физических и химических процессов, протекающих в клетке, позволяющих осуществлять обмен веществ и её деление (вне клетки жизнь не существует, вирусы проявляют свойства живой материи только после переноса генетического материала в клетку). Приспосабливаясь к окружающей среде, живая клетка формирует всё многообразие живых организмов. Основной атрибут живой материи — генетическая информация, используемая для репликации. Более или менее точно определить понятие «жизнь» можно только перечислением качеств, отличающих её от нежизни. На текущий момент нет единого мнения касательно понятия жизни, однако учёные в целом признают, что биологическое проявление жизни характеризуется: организацией, метаболизмом, ростом, адаптацией, реакцией на раздражители и воспроизводством. Энгельс определил жизнь, как способ существования белковых тел, и этот способ состоит в постоянном самообновлении химических составных частей этих тел. Здесь субстрат жизни — белковые тела. А способ существования требует обмена с окружающей средой. С прекращением обмена прекращается жизнь.

Жизнь — это качественно особая форма существования материи связанная с самовоспроизведением. Все живое происходит только из живого. Сущность жизни заключается в самовоспроизведении, которое обеспечивается передачей генетической информации от поколения к поколению. Жизнь — открытая система, состоящая из подсистем более низкого порядка.

В настоящее время считают, что субстрат жизни представлен нуклеопротеидами, они входят в состав ядра и цитоплазмы клеток животных и растений и цитоплазмы у прокариот. Нуклеопротеиды становятся субстратом жизни лишь тогда, когда они находятся и функционируют в клетках. Вне клеток — это химические соединения.

Главные этапы на пути возникновения и развития жизни, по-видимому, состоят в: 1) образовании атмосферы из газов, которые могли бы служить «сырьем» для синтеза органических веществ (метана, оксида и диоксида углерода, аммиака, сероводорода, цианистых соединений), и паров воды; 2) абиогенном (т.е. происходящем без участия организмов) образовании простых органических веществ, в том числе мономеров биологических полимеров — аминокислот, cахаров, азотистых оснований, АТФ и других мононуклеотидов; 3) полимеризации мономеров в биологические полимеры, прежде всего белки (полипептиды) и нуклеиновые кислоты (полинуклеотиды); 4) образовании предбиологических форм сложного химического состава — протобионтов, имеющих некоторые свойства живых существ; 5) возникновении простейших живых форм, имеющих всю совокупность главных свойств жизни,—примитивных клеток; 6) биологической эволюции возникших живых существ.

Гипотеза биохимической происхождения: этап предшествовавший появлению жизни, в ходе которого органические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов.

Панспермия Земля все время своего существования подвергается бомбардировке кометами и метеоритами. Особенно интенсивными они были сразу после образования планеты. В некоторых метеоритах были обнаружены простые органические соединения, среди прочих аминокислоты. Наиболее вероятно попадание живых организмов внеземного происхождения с метеоритами и космической пылью. Это предположение основывается на данных о высокой устойчивости некоторых организмов и их спор к радиации, глубокому вакууму, низким температурам и другим воздействиям. Однако до сих пор нет достоверных фактов, подтверждающих внеземное происхождение микроорганизмов, найденных в метеоритах.

Александр Иванович Опарин С повышением концентрации многие органические соединения способны к выделению микрокапелек органической фазы. Главным образом изучал возможности обмена веществ в коацерватах — модельных мицеллах. Им было показано, что ограниченные среды с простым обменом веществ могут возникнуть исключительно самоорганизацией, при условии присутствия катализаторов со специфическими свойствами. Так как использованные субстанции входят в состав живущих сегодня организмов, Опаринские коацерваты нужно видеть не как предшественники клеток, а как модель-аналог для возникновения предшественников клеток.

В качестве субстрата жизни внимание привлекают нуклеиновые кислоты (ДНК и РНК) и белки. Нуклеиновые кислоты — это сложные химические соединения, содержащие углерод, кислород, водород, азот и фосфор. ДНК является генетическим материалом клеток, определяет химическую специфичность генов. Под контролем ДНК идет синтез белков, в котором участвуют РНК.

Современная трактовка (ученый К.Гробстейн) «Жизнь – это макромолекулярная открытая система, для которой характерно определенная иерархическая организация, а также способность к воспроизведению, обмену веществ, и тщательное регулирование потока энергии. Жизнь представляет собой распространенный центр упорядоченности в менее упорядоченной вселенной.»

2. Фундаментальные свойства живого.

Фундаментальные свойства живого:

1. Самообновление, связанное с потоком вещества и энергии

2. Самовоспроизведение, обеспечивающее преемственность биологических систем, связано с потоками информации

3. Саморегуляция, базируется на потоке вещества, энергии и информации

Выделяют и другие фундаментальные свойства:

1. Химический состав. Живое состоит из тех же химических элементов, что и неживое, но в организмах есть молекулы веществ (биологические молекулы) характерные только для живого: белки, нуклеиновые кислоты, липиды

2. дискретность и целостность. Любая биологическая система состоит из частей, т. е. Дискретна. Взаимодействие этих частей образует целостную систему. Например в состав организма входят отдельные органы, которые функционируют как единое целое.

3. структурная организация. Живые системы способны создавать порядок из хаотического движения молекул, образуя определенные структуры. Сюда относится комплекс саморегулирующихся процессов обмена веществ. Они протекают в строго определенном порядке и направлены на поддержание постоянства внутренней среды, гомеостаза

4. Обмен веществ и энергии. Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма.

5.Самовоспроизведение и самообновление. Предполагает образование новых молекул и структур, несущих генетическую информацию, находящуюся в ДНК. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена.Многие виды организмов сочетают несколько способов размножения. В процессе бесполого размножения новая особь образуется из одной или группы клеток. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции.

6.Наследственность. Молекула ДНК способна хранить и передавать информацию благодаря матричному принципу репликации, обеспечивая преемственность поколений.

7.Изменчивость. При передачи наследственной информации иногда возникают отклонения, если изменения благоприятны для жизни, они закрепляются отбором. Выделяют две основные формы изменчивости,- генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. При ненаследственной (модификационной ) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа

8.Рост и развитие 9.Раздражимость и движение.. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.
10. Индивидуальное развитие. Всем свойственен процесс индивидуального развития - онтогенез. под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи.

3. Современная классификация живого. Неклеточные и клеточные формы жизни. Гипотезы происхождения эукариотических клеток. Прокариоты и эукариоты. Эволюционные предшественники многоклеточных организмов – колониальные формы простейших организмов.

Современная классификация живого:

Империи:

1. Неклеточные:

-Вирусы

2. Клеточные

-Надцарства:

1) Прокариоты

Царства:

А) Бактерии Б) Растения 2) Эукариоты

Царства:

А) Растения

Б) Грибы

Г) Животные

• Наиболее популярна в настоящее время симбиотическая гипотеза происхождения эукариотических клеток, согласно которой основой, или клеткой-хозяином, в эволюции клетки эукариотического типа послужил анаэробный прокариот, способный лишь к амебоидному движению. Переход к аэробному дыханию связан с наличием в клетке митохондрии, которые произошли путем изменений симбионтов — аэробных бактерий, проникших в клетку-хозяина и сосуществовавших с ней.

Серьезным доводом в пользу симбиотического происхождения митохондрий, центриолей и хлоропластов является то, что перечисленные органеллы имеют собственную ДНК. Вместе с тем белки бациллин и тубулин, из которых состоят жгутики и реснички соответственно современных прокариот и эукариот, имеют различное строение

• Согласно инвагинационной гипотезе, предковой формой эукариотической клеткибыл аэробный прокариот. Внутри такой клетки-хозяина находилось одновременно несколько геномов, первоначально прикреплявшихся к клеточной оболочке. Органеллы, имеющие ДНК, а также ядро, возникли путем впячивания и отшнуровывания участков оболочки с последующей функциональной специализацией в ядро, митохондрий, хлоропласты. В процессе дальнейшей эволюции произошло усложнение ядерного генома, появилась система цитоплазматических мембран.

Прокариоты (безъядерные организмы) – примитивные организмы, не имеющие четко оформленного ядра. В таких клетках выделяется лишь ядерная зона, содержащая молекулу ДНК. Генетический аппарат представлен ДНК единственной кольцевой хромосомы, к-ая лишена основных белков – гистонов (белков Кл-ых ядер). Благодаря значительному кол-ву диаминокислот аргинина и лизина гистоны им. щелочной характер. Кроме того, в клетках прокариот отсутствуют многие органеллы. У них имеются только наружная клеточная мембрана и рибосомы. К прокариотам относятся бактерии. Особенностью организмов простейших является то, что они соответствуют в структурном отношении уровню одной клетки, а в физиологическом – полноценной особи.). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Эукариоты – истинно ядерные организмы, имеют четко оформленное ядро и все основные структурные компоненты клетки. К ним относятся растения, животные, грибы.

• Эволюционными предшественниками многоклеточных организмов были колониальные формы простейших организмов. Наиболее ранние ископаемые останки многоклеточных животных имеют возраст около 700 млн. лет. Палеонтологическая летопись свидетельствует о том, что многоклеточные организмы возникали в ходе эволюции от одноклеточных эукариот независимо не менее 17 раз.

4. Эволюционно-обусловленные иерархические уровни организации живого. Элементарная эволюционная единица и элементарное эволюционное явление на каждом из уровней.

Иерархической называется система, в которой части, или элементы, расположены в порядке от низшего к высшему. Элементарная единица — это структура или объект, закономерные изменения которых, обозначаемые как элементарное явление, составляют специфический для соответствующего уровня вклад в процесс сохранения и развития жизни.

Уровень – это функциональное место биологической структуры, определенной степени сложности в общей системе систем живого.

Системы: 1. Микросистема А) Молекулярно-генетический уровень (Ген; конвариантная редупликация или самовоспроизведение с изменением генов (ДНК))

Б) Субклеточный уровень(Органоиды; разделение их на функции)

В) Клеточный(клетка; реакции клеточного метаболизма)

2.Мезосистема А) Тканевый (ткань; дифференцировка и специализация клеток)

Б)Органный (орган; объединение различных тканей в органы)

В) Организменный(особь; индивидуальное развитие организма)

3. Макросистема А)Популяционно-видовой(популяция; действие элементарных эволюционных факторов приводит к эволюционно значимым изменениям генотипа популяции)

Б) Биогеоценотический (биогеоценозы; вещественно-энергетический круговорот)

В)Биосферный(биосфера; биогеохимический круговорот)

1. Молекулярно-генетический — это начальный, глубинный уровень организации живого. Представлен молекулами нуклеиновых кислот, белков, углеводов, липидами и стероидами, которые находятся в клетках и называются биологическими молекулами. На этом уровне осуществляются важнейшие процессы жизнедеятельности (кодирование, передача наследственной информации, дыхание, обмен веществ и энергии и т.д). Жизненный субстрат, для всех животных, растений, вирусов, представлен всего лишь 22 ак. Одними и теми же, и 4 одинаковыми азотистыми основаниями, близкий состав имеют липиды и углеводы. Элементарной единицей на этом уровне служит ген. Элементарное явление заключается в возможности некоторых изменений в содержании закодированной в гене информации при редупликации (генные 2. Клеточный. Представлен самостоятельными организмами, или клетками многоклеточных орг. Главная специфическая черта заключается в том, что с него начинается жизнь. Поскольку возникающий на молекулярном уровне матричный синтез происходит в клетках. Клетки являются основной формой организации живой материи, ее элементарными единицами, из которых построены и прокариоты и эукариоты. Особенность: специализация клеток. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и времени. Элементарная единица — клетка, элементарное явление представлено реакциями клеточного метаболизма, составляющими основу потоков энергии вещества и информации. Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией. Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

3.Организменный, онтогенетический. Представлен одноклеточными и многоклеточными организмам, обнаруживается труднообозримое многообразие форм. Каждый вид состоит из отдельных индивидуумов, специфическая особенность уровня: происходит декодирование и реализация генетической информации. Элементарная единица — особь, в ее развитии от момента зарождения до прекращения существования. Элементарное явление: закономерные изменения организма в индивидуальном развитии, онтогенезе.

4.Популяционно-видовой. Элементарная единица — популяция, совокупность особей одного вида, популяция представляет собой открытую генетическую систему в силу возможности внутрипуляционных скрещиваний. Эволюционно значимое изменение генофонда происходящее под действием элементарных эволюционных факторов (мутационный процесс, колебание численности), представляют элементарное явление на данном уровне. На этом уровне изучаются генетические и экологические особенности популяций, элементарные эволюционные факторы и их влияние на генофонд, проблема сохранения видов, живые существа

5.Биоцинотический, Элементарное явление — это изменение потока энергии и круговорота веществ в биоценозе, элементарная единица — биоценоз. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций, динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

6. биосферный – высшая форма организации живого, все вещественно-эн-ие круговороты объединенные в единый. Элементарное явление – изменение круговорота.

5. Клетка – элементарная биологическая система. Клеточная теория как доказательство единства всего живого. Основные положения клеточной теории. Современное состояние клеточной теории.

Клетка представляет собой обособленную, наименьшую по размерам структуру, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях окружающей среды поддерживать эти свойства в самой себе, а также передавать их в ряду поколений. Клетка является открытой системой, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой. Клетка, таким образом, несет полную характеристику жизни. Ей принадлежит роль элементарной структурной, функциональной и генетической единицы.

• Клеточная теория сформулирована Т. Шванном и М. Шлейденаном.

ПОЛОЖЕНИЯ:

1) жизнь, какие бы сложные или простые (например, вирусы) формы она ни принимала, в ее структурном, функциональном и генетическом отношении обеспечивается в конечном итоге только клеткой.

2) в настоящих условиях единственным способом возникновения новых клеток является деление предсуществующих клеток.

Современная биология расширила круг доказательств этому, все клетки одинаковым образом: а) хранят биологическую информацию, б) редуплицируют генетический материал с целью его передачи в ряду поколений, в) используют информацию для осуществления своих функций на основе синтеза белка, г) хранят и переносят энергию, д) превращают энергию в работу, е) регулируют обмен веществ.

3) Структурно-функциональными единицами многоклеточных существ являются клетки. Вместе с тем многоклеточный организм характеризуется рядом особых свойств, которые нельзя свести к свойствам и качествам отдельных клеток.

Основные положения клеточной теории. Современная клеточная теория включает следующие основные положения: №1 Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет;. №2 Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование; №3 Клетки всех организмов разны по форме, но сходны по своему химическому составу, строению и функциям; №4 Новые клетки образуются только в результате деления исходных клеток; которому предшествует воспроизведение её генетической информации. №5 Клетки многоклеточных организмов образуют ткани, из тканей органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток; №6 Клетки имеют одинаковый объём генетической информации, но отличаются друг от друга тем, что у них реализуется генетический объём по разному, следствием чего является морфологическое и функциональное разнообразие клеток - дифференцировка.

6. Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке. Специализация и интеграция клеток многоклеточного организма.

Клетка — открытая система, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой. Жизнедеятельность клетки обеспечивается процессами, образующими три потока: информации, энергии веществ.

Благодаря наличию потока информации клетка приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, передает в ряду поколений. В этом потоке участвуют ядро, макро молекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). Позже полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру, и используется в качестве катализаторов или структурных белков. Также функционируют геномы митохондрий, а в зеленых растениях — и хлоропластов.

Поток энергии обеспечивается механизмами энергообеспечения — брожением, фото — или хемосинтезом, дыханием. Дыхательный обмен включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде аденозинтрифосфата (АТФ). Энергия АТФ в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, регуляторную. Анаэробный гликолиз — процесс бескилородного расщепления глюкозы. Фотосинтез — механизм преобразования энергии солнечного света в энергию химических связей органических веществ.

Дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот.

Биологически активные вещества — гормоны, ферменты, адреналин, серотонин и т. д.

7. Структурно-функциональная организация эукариотических клеток. Компартментация как способ изоляции разнонаправленных процессов (химических реакций) внутри клетки.

Строение клеток животных и растений характеризуется принципиальным сходством, но форма, размеры и масса их чрезвычайно разнообразны и зависят от того, является ли организм одноклеточным или многоклеточным. Эукариотические клетки по сравнению с прокариотическими обладают более сложной системой восприятия веществ из окружающей среды, без чего невозможна их жизнь. Существуют и другие различия между эукариотическими и прокариотическими клетками. Форма клеток бывает самой разнообразной и часто зависит также от выполняемых ими функций. Некоторые виды клеток характеризуются значительными размерами. КОМПАРТМЕНТАЦИЯ — разграничение фонда ионов и низкомолекулярных соединений в живой клетке на отдельные участки, отличающиеся функциональным значением и интенсивностью участия в обмене веществ. Осуществляется при участии мембран и органелл клетки. Мембранная система. Эта система представлена клеточной плазматической мембраной, цитоплазматической (эндоплазматической) сетью и пластинчатым комплексом Гольджи. а) Плазматическая (цитоплазматическая) состоит из трех слоев, два из которых являются белковыми слоями, а третий (внутренний) — двойным фосфолипидным слоем. Плазматическая мембрана является полупроницаемой структурой. Через нее в клетку входят питательные вещества и выходят все «отходы» (продукты секреции). Она создает барьер проницаемости. В результате этого плазматическая мембрана регулирует обмен различными веществами между клеткой и внешней средой. В плазматической мембране содержатся многие важные ферменты, системы активного транспорта ионов натрия и калия при помощи АТФазы, а также системы транспорта аминокислот. У клеток растений наружной структурой служит жесткая клеточная стенка, построенная из молекул целлюлозы, создающих очень прочные волокна, погруженные в матрикс из других поли-сахаридов и полимерного вещества лигнина. На поверхности плазматических мембран имеются электрически заряженные группы, из-за которых поддерживается разность электрических потенциалов на мембранах. На поверхности плазматических мембран имеются также специфические рецепторы (участки распознания) для гормонов и других соединений. Кроме того, здесь же локализованы особые рецепторы, ответственные за индивидуальную тканевую совместимость

б ) Цитоплазматическая (эндоплазматическая) сеть представлена пронизывающими однослойными мембранными полостями (трубочками, цистернами, вакуолями) разных размеров, заполненными белковыми гранулами.

Различают гранулярный (шероховатый) эндоплазматический ретикулум, который выстлан множеством рибосом, служащих центрами синтеза молекул белков.

Агранулярный (гладкий) эндоплазматический ретикулум, на котором нет рибосом, но на котором синтезируются липиды и углеводы. Степень насыщенности гранулярной эндоплазмати-ческой сети рибосомами определяет степень интенсивности синтеза белков. Эндоплазматическая сеть без перерыва соединена с цитоплазматической мембраной, ядерной мембраной и пластинчатым комплексом Гольджи. Это позволяет синтезируемым белкам проходить в комплекс Гольджи, откуда после специальной обработки они выводятся из клетки или идут на построение лизосом. Плазматическая мембрана, мембрана эндоплазматической сети, а также ядер, митохондрий и хлоропластов представляют собой чрезвычайно сложные структуры, обладающие рядом важнейших биологических свойств. Многие мембраны содержат транспортные системы, с помощью которых осуществляется перенос молекул питательных веществ и неорганических ионов внутрь клеток а также вывод из клеток продуктов жизнедеятельности. Мембранные структуры способны к самовосстановлению, если в них по каким-то причинам возникают повреждения.

в) Комплекс Гольджи. Он присутствует во всех клетках, кроме эритроцитов и сперматозоидов, и представляет собой систему дискообразных однослойных мембран (мембранных пузырьков или цистерн), локализующихся рядом с гладким эндоплазмати-ческим ретикулом и ядром (рис. 49). Часто в клетках обнаруживают несколько таких комплексов (диктиосом). Основная функция комплекса Гольджи заключается в том, что он является местом упаковки (уплотнения) белков, поступающих с рибосом, а также присоединения к белкам углеводов (образования гликопротеидов), а к полисахаридам — сульфатных групп с последующим транспортом их к другим клеточным структурам или за пределы клетки (экзоцитоз). Как отмечено выше, он участвует также и в формировании лизосом.

8. Строение эукариотической клетки: поверхностный аппарат, протоплазма (ядро и цитоплазма).

Основная часть поверхностного аппарата клетки — плазматическая или биологическая мембрана (цитоплазматическая мембрана). Клеточная мембрана — важнейший компонент живого содержимого клетки, построенный по общему принципу. Предложено несколько моделей строения. Согласно жидкостно-мозаичной модели, предложенной в 1972 г. Николсоном и Сингером, в состав мембран входит бимолекулярный слой фосфолипидов, в который включены молекулы белков. Липиды — водонерастворимые вещества, молекулы которых имеют два полюса: гидрофильный, гидрофобный. В биологической мембране молекулы липидов двух параллельных слоев обращены друг к другу гидофобными концами. А гидрофильные полюса остаются снаружи, которые образуют гидрофильные поверхности. На поверхности мембраны кнаружи и кнутри расположены НЕСПЛОШНЫМ слоем белки, их 3 группы: периферические, погруженные (полуинтегральные), пронизывающие (интегральные). Большинство белков мембраны — ферменты. Погруженные белки образуют на мембране биохимический конвейер, на котором происходит превращение веществ. Положение погруженных белков стабилизируется периферическими белками. Пронизывающие белки обеспечивают передачу вещества в двух направлениях: через мембрану внутрь клетки и обратно. Бывают двух типов: переносчики и каналообразующие. Каналообразующие выстилают пору, заполненную водой, через которую проходят растворенные неорганические вещества с одной стороны мембраны на другую. Плазматическая мембрана, или плазмалемма, ограничивает клетку снаружи, выполняя роль механического барьера. На внешней поверхности плазматической мембраны в животной клетке белковые и липидные молекулы, связаны с разветвленными углеводными цепями, образуя гликокаликс, надмебранный, неживой слой, продукт жизнедеятельности клетки. Углеводные цепи выполняют роль рецепторов (межклеточное узнавание- свой-чужой). Клетка приобретает способность специфически реагировать на воздействие извне. В надмебранный слой у бактерий входим муреин, у растений — целлюлоза или пектин. Под плазматической мембраной со стороны цитоплазмы имеются кортикальный (поверхностный) слой и внутриклеточные фибриллярные структуры, обеспечивают механическую устойчивость мембраны.

ПРОТОПЛАЗМА Цитоплазма - внутренняя среда живой или умершей клетки, кроме ядра и вакуоли, ограниченная плазматической мембраной. Включает в себя гиалоплазму — основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения. Так же она является смесью коллоидного (в него входят белки) и истинного раствора (минеральные соли, глюкоза, аминокислоты).В состав цитоплазмы входят все виды органических и неорганических веществ. В ней присутствуют также нерастворимые отходы обменных процессов и запасные питательные вещества. Основное вещество цитоплазмы — вода. Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. В ней протекают все процессы обмена веществ.

Ядро- это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка. Ядро состоит из хроматина, ядрышка, кариоплазмы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация (или редуплика́ция) — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Синтезированные в ядре молекулы РНК модифицируются, после чего выходят в цитоплазму. Образование обеих субъединиц рибосом происходит в специальных образованиях клеточного ядра — ядрышках. Таким образом, ядро клетки является не только вместилищем генетической информации, но и местом, где этот материал функционирует и воспроизводится. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Последнее может сообщаться с канальцами цитоплазматической сети. Основу ядерного сока, или матрикса, составляют белки. Ядрышко представляет собой структуру, в которой происходит образование и созревание рибосомальных РНК (рРНК). Такие участки в метафазных хромосомах выглядят как сужения и называются вторичными перетяжками. Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: