Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.
|
Следствие 1.
.
Следствие 2. Сумма вероятностей событий, образующих полную группу, равна единице.
Вероятность суммы двух совместных событий
и
равна разности между единицей и вероятностью произведения противоположных событий
.
|
□ Событие
состоит в появлении хотя бы одного из событий
и
. Противоположное ему событие
состоит в том, что не произойдет ни одно из событий
и
, т.е.
. Так как
, то
■
Следствие 1.
.
Следствие 2. Если события независимы в совокупности, то
.
Если
,
, …,
, то
|
В частности, если
, то
|
Примеры.__________________________________________________________
1. Вероятности банкротства для двух однотипных предприятий соответственно равны 0,1 и 0,2. Найдем вероятность банкротства хотя бы одного предприятия.
Обозначим события:
− банкротство первого предприятия,
− банкротство второго предприятия, тогда
− банкротство хотя бы одного предприятия. События
и
независимые.
По условию
=0,1;
=0,2. Значит,
=1−0,1=0,9;
=1−0,2=0,8.
=1−0,9∙0,8=1−0,72=0,28.
2. Вероятность попадания в цель при одном выстреле равна 0,6. Найдем вероятность хотя бы одного попадания при двух выстрелах.
Обозначим события:
− попадание при первом выстреле,
− попадание при втором выстреле. События
и
независимы.
0,6;
.
.