Уравнением Лапласа описываются различные физические процессы и в каждой задаче искомое решение должно удовлетворять уравнению в некоторой области D, а также некоторому дополнительному условию на границе S этой области D.
В зависимости от вида граничного условия различают следующие основные виды граничных задач:
1) найти решение уравнения Лапласа, удовлетворяющее граничным условиям первого рода: - первая краевая задача или задача Дирихле;
2) найти решение уравнения Лапласа, удовлетворяющее граничным условиям второго рода: - вторая краевая задача или задача Неймана;
3) найти решение уравнения Лапласа, удовлетворяющее граничным условиям третьего рода: - третья краевая задача,
где - определенные на поверхности S функции; Р – точка поверхности S; - внешняя нормаль к S; .
Краевые задачи могут быть внутренними или внешними. Они различаются в зависимости от того, в какой области внутренней или внешней относительно поверхности S ищется решение.
Внутренняя задача Дирихле формулируется следующим образом: Найти непрерывную в замкнутой области функцию и (М), которая удовлетворяла бы в области D уравнению Лапласа и принимала бы на поверхности S заданные значения F(P). Математически это можно записать следующим образом:
Внутренняя задача Неймана формулируется так: найти внутри области D решение и (М) уравнения Лапласа
непрерывное в замкнутой области и удовлетворяющее на поверхности S условию
Рассмотрим теперь краевые задачи для уравнения Лапласа внутри круга и вне его. Пусть существует область, представляющая собой круг радиуса R. Запишем двухмерное уравнение Лапласа в полярных координатах, полагая, что , а
или . (18.12)
Для нахождения частных решений уравнения (18.12) используем метод Фурье и представим эти решения в виде
(18.13)
После подстановки решения (18,13), первой и второй производной от этой функции по r, а также второй производной от нее по φ в исходное уравнение (18.12), получим
.
Разделим в этом уравнении переменные
(18.14)
Это равенство выполняется тогда и только тогда, если обе его части равны одной и той же постоянной, например, λ
Тогда для каждой функции и получим два уравнения
, (18.15)
. (18.16)
Рассмотрим сначала уравнение (18.15) для функции . Ясно, что при изменении угла φ на величину 2π однозначная функция должна вернуться к исходному значению, т.е. . Отсюда . Значит, , т.е. функция является периодической функцией с периодом 2π. Уравнение (18.15) является линейным однородным уравнением второго порядка и поэтому его решение будем искать в виде
,
После подстановки которого в уравнение (18.15) получим характеристическое уравнение
,
Корни характеристического уравнения являются исключительно мнимыми, поэтому общее решение уравнения (18.15) при будет иметь вид,
. (18.17)
и в силу периодичности функции должно быть выполнено равенство , где n ≥ 0 – целое число.
В самом деле, из равенства
,
Введем обозначения
,
тогда можно записать
,
т.е.
, (18.18)
где n ≥ 0 – целое число.
Следовательно, частные решения уравнения (18.15) при различных значениях n можно записать в виде
(18.19)
Исходя из (18.18) следует, что уравнение (18.16) можно записать в виде
(18.20)
Уравнение (18.20) в случае, когда представляет собой уравнение Эйлера с переменными коэффициентами, которое можно привести к уравнению с постоянными коэффициентами используя замену переменной по правилу . Вычислим производные уравнения (18.20) в новых переменных
.
Следовательно, подставив эти производные в уравнение (18.19) получим обыкновенное линейное и однородное дифференциальное уравнение с постоянными коэффициентами
. (18.21)
Решение этого уравнения будем искать в виде
,
Вычислим от этой функции производные и подставим в уравнение (18.21)
,
следовательно общее решение уравнения (18.21) имеет вид
и возвращаясь к переменной r, получим
. (18.22)
Если в уравнении (18.20) , то это уравнение принимает вид
(18.23)
Это уравнение также является уравнением Эйлера, поэтому, производя замену , приходим к уравнению
,
решение которого будет иметь вид
,
и возвращаясь к переменной r, получим
. (18.24)
решение уравнения (18.20) при , а при любых значениях n частные решения уравнения (18.20) запишем в виде
. (18.25)
Подставляя (18.19) и (18.25) в решение (18.13) получим набор частных решений
,
используя принцип суперпозиции, а также вследствие линейности и однородности уравнения Лапласа можно утверждать, что сумма частных решений также будет его решением, следовательно, общее решение уравнения Лапласа будет иметь вид
(18.26)
Пользуясь этой формулой и задавая граничные условия первого, второго и третьего рода можно решать как внутренние, таки внешние граничные задачи – Дирихле, Неймана и смешанную задачу.
I. Рассмотрим внутреннюю задачу Дирихле для уравнения Лапласа в круге радиуса R
Для решения этой задачи используем формулу (18.26), учитывая при этом, что функция должна быть ограничена, поэтом мы должны принять, что все коэффициенты , поскольку в противном случае функция имела бы разрыв в точке r = 0 и не была бы гармонической в круге. Исходя из этого, и полагая, что все коэффициенты , а также в формуле (18.26) выделяя члены при n = 0,
получим решение уравнения Лапласа
(18.27)
Удовлетворим в этом решении поставленным граничным условиям
Разложим функцию f (φ) в ряд Фурье на интервале от 0 до 2π
,
следовательно, можно записать
.
Теперь, приравнивая коэффициенты при одинаковых функциях в левой и правой частях полученного равенства
,
найдем значения искомых коэффициентов An и Bn
Подставляя найденные коэффициенты в решение (18.27), получим окончательное решение внутренней задачи Дирихле для уравнения Лапласа в круге
(18.28)
где cn и dn коэффициенты, заданные поставленными граничными условиями.
Решение задачи Дирихле также можно получить и используя формулу Пуассона
, (18.29)
которая при непрерывной функции дает классическое решение задачи Дирихле в круге.
II. Рассмотрим внешнюю задачу Дирихле для уравнения Лапласа в круге радиуса R
Для решения этой задачи используем формулу (18.26), учитывая при этом, что функция должна быть ограничена на бесконечности и неограниченна при r → 0, поэтом мы должны принять, что все коэффициенты . Исходя из этого, и полагая, что все коэффициенты , получим решение уравнения Лапласа
(18.30)
Удовлетворим в этом решении поставленным граничным условиям
, и разложим функцию f (φ) в ряд Фурье на интервале от 0 до 2π
.
Следовательно, можно записать
.
Теперь, приравнивая коэффициенты при одинаковых функциях в левой и правой частях полученного равенства
,
найдем значения искомых коэффициентов An и Bn
Подставляя найденные коэффициенты в решение (18.30), получим окончательное решение внутренней задачи Дирихле для уравнения Лапласа в круге
, (18.31)
где cn и dn коэффициенты, заданные поставленными граничными условиями.
III. Рассмотрим внутреннюю задачу Неймана:
(18.32)
Для решения этой задачи вычислим производную от решения (18.27)
. (18.33)
И запишем граничные условия
и разложим функцию f (φ) в ряд Фурье на интервале от 0 до 2π
.
Следовательно, можно записать
.
Теперь, приравнивая коэффициенты при одинаковых функциях в левой и правой частях полученного равенства, найдем значения искомых коэффициентов An и Bn
Подставляя найденные коэффициенты в решение (18.33), получим окончательное решение внутренней задачи Неймана для уравнения Лапласа в круге
, (18.31)
где С – произвольная постоянная.
Необходимо отметить, что решение задачи Неймана существует только при условии
(18.32)
и определяется с точностью до произвольной постоянной.
Смешанная граничная задача для уравнения Лапласа в круге радиуса R решается аналогично задачам рассмотренным выше.
Пример 18.1. Найти решение уравнения Лапласа для внутренней части круга радиуса R, удовлетворяющее краевому условию
. (П18.1.1)
▲ Здесь задана задача Дирихле, где правая часть граничного условия (П18.1.1) . Решение ищется в круге , значит выписывать решение будем по (18.28). Найдем в этой формуле коэффициенты
Для этого подставим само решение (18.28) в левую часть граничного условия (П18.1.1) при , а правую часть, т.е. функцию разложим в ряд Фурье по синусам и косинусам
.(П18.1.2)
Теперь сравним коэффициенты при синусах и косинусах с одинаковыми аргументами и при свободном члене в левой и правой частях полученного равенства (П18.1.2)
(при ), т.к. справа нет слагаемых с ,
а также все остальные (кроме ). Подставим ненулевые в решение (18.28) и получим ответ, т.е. найдем функцию
▲
Пример 18.2. Найти решение уравнения Лапласа внутри круга радиуса R , удовлетворяющее на границе условию Неймана
(П18.2.1)
▲ Здесь задана задача Неймана, где правая часть граничного условия (П18.2.1) (уже разложена в ряд Фурье), которую можно представить в виде двух функций
и для каждой из них найдем решение. Прежде чем решать поставленную задачу проверим выполнение условия (18.32)
,
так как условие (18.32) выполнено, то для решения поставленной задачи воспользуемся, описанном выше алгоритмом (III.)
Вычислим производную от решения (18.27)
.
и запишем граничные условия сначала для функции
(П18.2.2)
Теперь сравним коэффициенты при синусах и косинусах с одинаковыми аргументами в левой и правой частях полученного равенства (П18.2.2):
а все остальные и . Следовательно, решение, соответствующее функции имеет вид
.
Затем запишем граничные условия сначала для функции
(П18.2.3)
Теперь сравним коэффициенты при синусах и косинусах с одинаковыми аргументами в левой и правой частях полученного равенства (П18.2.3):
а все остальные .
Следовательно, решение, соответствующее функции имеет вид
.
Таким образом, решение исходной задачи будет определяться формулой
▲