Реакции в растворах электролитов

При растворении в воде кислоты, основания, соли под действием полярных молекул растворителя подвергаются электролитической диссоциации, распадаясь на положительно заряженные ионы – катионы и отрицательно заряженные ионы – анионы. Кислоты – электролиты, диссоциирующие в растворах с образованием катионов водорода Н+:

HRO Û Н+ + RO-. Основания – электролиты, диссоциирующие с образованием гидроксид-ионов ОН-: ROH Û R+ + OH-. Амфотерные электролиты могут диссоциировать как кислоты, и как основания:

Н+ + RO- Û ROH Û R+ + OH-. Амфотерность электролита объясняется малым различием связей между металлом и кислородом (R-O) и между кислородом и водородом (О-Н). К амфотерным электролитам относятся гидроксиды Al(OH)3, Zn(OH)2, Be(OH)2, Pb(OH)4, Sn(OH)2, Sn(OH)4, Cr(OH)3 и другие. Средние соли – электролиты, при диссоциации которых образуются катионы металлов (или аммония NH4+) и анионы кислотных остатков.

Диссоциация может протекать полностью или частично. Отношение числа продиссоциированных молекул к числу растворенных называют степенью диссоциации. В зависимости от величины степени диссоциации электролиты делятся на сильные и слабые.

Сильные электролиты практически полностью диссоциируют на ионы. К ними относятся кислоты: HCl, HBr, HI, HNO3, H2SO4, HClO4, HMnO4; основания щелочных и щелочноземельных металлов: LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)2, Sr(OH)2, Ba(OH)2; почти все соли.

Слабые электролиты диссоциируют на ионы в очень малой степени. К ним относятся: вода Н2О, неорганические кислоты (например, Н2СО3, Н2S, HNO2, HCN, HClO); многие органические кислоты (например, СН3СООН, НСООН); гидроксид аммония NH4OH, малорастворимые основания (например, Mg(OH)2, Fe(OH)2), амфотерные гидроксиды; некоторые соли (например, CdCl2, Mg(CN)2, HgCl2, Fe(SCN)3).

Уравнение процесса электролитической диссоциации сильного электролита записывают с указанием его практической необратимости: приводится лишь одна стрелка ®, направленная от молекулярной формы электролита к его ионам; уравнение диссоциации слабых электролитов записывают с указанием ее обратимости: Û.

Наличие электрических зарядов у ионов и совершаемые ими перемещения в растворе придают растворам электролитов высокую химическую активность. При смешивании растворов различных электролитов находящиеся в них ионы противоположного заряда могут ассоциировать в молекулы, комплексы или кристаллы нового вещества, в результате чего в растворе происходят химические реакции. Реакции, заключающиеся в обмене ионами между различными электролитами, называют реакциями ионного обмена. Реакции обмена протекают с очень высокими скоростями, так как реагенты уже находятся в активированном состоянии и химическое равновесие большинства процессов устанавливается быстро. Основным фактором, влияющим на смещение равновесия в растворах электролитов, является изменение концентрации ионов. Направление реакции обмена (смещение равновесия системы) определяется возможностью образования малодиссоциирующего, малорастворимого или газообразного соединения. В результате те или иные ионы выводятся из сферы взаимодействия в виде слабого электролита, осадка, газа, что приводит к более полному протеканию реакции.

Если среди исходных и образующихся веществ имеются малодиссоциированные или малорастворимые соединения, то равновесие системы смещается в сторону наиболее полного связывания ионов, т. е. в сторону наименее диссоциированного и наименее растворимого вещества.

Реакции обмена удобно выражать в виде ионно-молекулярных (ионных) уравнений, которые показывают сущность происходящих в растворах процессов. Эта форма записи отражает состояние веществ в растворе и их взаимодействие.

При составлении ионно-молекулярных уравнений (полных и сокращенных) формулы сильных электролитов записывают в виде ионов, так как именно в таком состоянии они находятся в растворе. Формулы слабых электролитов, газообразных и малорастворимых веществ записывают в виде молекул, независимо от того, являются ли они исходными веществами или продуктами реакции. Газообразные вещества или вещества, выпадающие в осадок, принято отмечать вертикальной стрелкой ­ или ¯ (см. приложение 2).

Пример 1. Написать молекулярные и ионно-молекулярные уравнения реакций взаимодействия между водными растворами следующих веществ:

а) HCl и NaOH

Решение. Запишем уравнение реакции в молекулярном виде:

HCl + NaOH = NaCl + H2O

Учитывая, что HCl, NaOH и NaCl относятся к сильным электролитам, а H2O – к слабым, запишем полное ионно-молекулярное уравнение:

H++ Cl - + Na+ + OH - = Na+ + Cl - + H2O.

В ходе реакции ионы Na+ и Cl- не претерпевают изменений. Исключив эти ионы из левой и правой частей уравнения, получим сокращенное ионно-молекулярное уравнение:

H+ + OH - = H2O.

Таким образом, реакция между любой сильной кислотой и любым сильным основанием (реакция нейтрализации) сводится к образованию из ионов водорода и гидроксид-ионов молекулы слабого электролита – воды.

б) Pb(NO3)2 и Na2S

Молекулярное уравнение реакции:

Pb(NO3)2 + Na2S = PbS¯ + 2 NаNО3

Для написания полного ионно-молекулярного уравнения реакции запишем сильные электролиты (растворимые соли Pb(NO3)2, Na2S и NаNО3) в ионной форме, а нерастворимую соль (PbS) в молекулярной форме:

Pb2+ +2NO3 - + 2Na+ + S2 - = PbS¯ + 2 Nа+ +2NО3 -

Ионы Na+ и NO3- не претерпевают изменений, поэтому исключим их из обеих частей уравнения.

Сокращенное ионно-молекулярное уравнение:

Pb2+ + S2 - = PbS¯

Протекание реакции обусловлено образованием труднорастворимого вещества.

в) К2СО3 и H2SO4

К2СО3 + H2SO4 = К2SO4 + СО2­ + H2O

Для написания ионно-молекулярного уравнения реакции запишем сильные электролиты (растворимые соли К2СО3, К2SO4 и H2SO4) в ионной форме, а СО2 (газообразное вещество) и Н2О (слабый электролит) – в молекулярной форме:

+ + СО32- + 2H+ + SO42 - = 2К+ + SO42 - + СО2­ + H2O

СО32 - + 2H+ = СО2­ + H2O

Полученное сокращенное ионно-молекулярное уравнение показывает, что данная реакция протекает с образованием газообразного вещества и слабого электролита.

г) HNO2 + KOH

HNO2 + KOH = KNO2 + H2O

HNO2 + K+ + OH- = K+ + NO2- + H2O

HNO2 + OH- = NO2- + H2O

Протекание реакции обусловлено образованием молекул воды. Но так как азотистая кислота HNO2 – слабый электролит и сама является фактором, определяющим протекание обратной реакции, то в отличие от трех предыдущих случаев реакция является обратимой. Однако равновесие системы смещено в направлении протекания прямой реакции, так как вода является гораздо более слабым электролитом, чем азотистая кислота.

Пример 2. Составьте два различных уравнения в молекулярном виде, которым будет соответствовать уравнение в сокращенном ионно-молекулярном виде: Ni2+ + S2 - = NiS¯.

Решение. Наличие катионов никеля и сульфид – анионов в левой части уравнения говорит о том, что взаимодействуют два сильных электролита – растворимые соли, состав которых может быть весьма разнообразным и одному ионно-молекулярному уравнению может соответствовать несколько молекулярных уравнений. Подписываем под символами ионов левой части данного уравнения такие ионы противоположного заряда, которые образовали бы с исходными ионами растворимые сильные электролиты. Затем такие же ионы записываем и под правой частью уравнения:

Ni2+ + S2 - = NiS¯

2NО3 - + 2К+ = 2NО3 - + 2К+

Суммируя оба равенства, получаем полное ионно-молекулярное уравнение:

Ni2+ + 2NО3 - + 2К+ + S2 - = NiS¯ + 2NО3 - + 2К+

Объединив ионы в формулы соединений, записываем уравнение в молекулярной форме:

Ni(NО3)2 + К2S = NiS¯ + 2КNО3

Подобрав другие подходящие ионы, получаем второе уравнение:

Ni2+ + S2 - = NiS¯

2Cl - + Ba2+ = 2Cl - + Ba2+

NiCl2 + BaS = NiS¯ + BaCl2

Пример 3. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия амфотерного гидроксида цинка с азотной кислотой и гидроксидом натрия. Напишите уравнения диссоциации гидроксида цинка в кислой и щелочной средах.

Решение. Так как гидроксид цинка Zn(OH)2 амфотерен, то он способен вступать во взаимодействие и образовывать соли не только с кислотами, но и с основаниями.

При взаимодействии его с азотной кислотой получается нитрат цинка и вода:

Zn(OH)2 + 2HNO3 = Zn(NO3)2 + 2H2O

Zn(OH)2 + 2H+ = Zn2+ + 2H2O

При взаимодействии с гидроксидом натрия в водных растворах образуются комплексные соединения:

Zn(OH)2 + 2NaOH = Na2[Zn(OH)4]

Zn(OH)2 + 2OH- = [Zn(OH)4]2-

Уравнения диссоциации гидроксида цинка имеют вид:

(в кислой среде) (в щелочной среде)

Амфотерные гидроксиды диссоциируют и как основания и как кислоты. Прибавление кислоты смещает это равновесие влево, а прибавление щелочи – вправо. Поэтому в кислой среде преобладает диссоциация по типу основания, а в щелочной по типу кислоты. В обоих случаях связывание в молекулы воды ионов, образующихся при диссоциации малорастворимого амфотерного электролита, вызывает переход в раствор новых порций таких ионов, их связывание, переход в раствор новых ионов. Следовательно, растворение такого электролита происходит как в растворе кислоты, так и в растворе щелочи.

ЗАДАНИЯ

181.Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) NaНСО3 и NaOH; б) К2SiO3 и HCl; в) BaCl2 и Na2SO4.

182. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) К2S и HCl; б) FeSO4 и (NH4)2S; в) Cr(OH)3 и KOН, учитывая, что гидроксид хрома (III) проявляет амфотерные свойства.

183. Составьте по два молекулярных уравнения реакций, которые выражаются ионно-молекулярными уравнениями:

а) Mg2+ + CO32 - = MgCO3

б) Н+ + ОН - = Н2О

184. Какие из веществ: Al(OH)3; H2SO4; Ba(OH)2; Cu(NO3)2 – будут взаимодействовать с гидроксидом калия? Выразите эти реакции молекулярными и ионно-молекулярными уравнениями.

185.Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) КНСО3 и КOH; б) Zn(OH)2 и NaOH; в) CaCl2 и AgNO3.

186. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) CuSO4 и H2S; б) BaCO3 и HNO3; в) FeCl3 и KOH.

187. Составьте по два молекулярных уравнения реакций, которые выражаются ионно-молекулярными уравнениями:

а) Cu2+ + S2 - = CuS

б) SiO32- + 2Н+ = Н2SiО3

188. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Sn(OH)2 и HCl; б) BeSO4 и KOH; в) NH4Cl и Ba(OH)2.

189. Какие из веществ КНSО4, CH3COOK, Ni(OH)2, Na2S, будут взаимодействовать с раствором серной кислоты? Выразите эти реакции молекулярными и ионно-молекулярными уравнениями.

190. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Hg(NO3)2 и NaJ; б) H2SO4 и Na2S; в) Pb(OH)2 и KOH, учитывая, что гидроксид свинца (II) проявляет амфотерные свойства.

191. Составьте молекулярные уравнения реакций, которые выражаются ионно-молекулярными уравнениями:

а) CaCO3 + 2H+ = Ca2+ + H2O + CO2

б) Al(OH)3 + OH - = AlO2 - + 2H2O

в) Pb2+ + 2J - = PbJ2

192. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Cu(OH)2 и HNO3;

б) ZnOHNO3 и HNO3; в) Be(OH)2 и NaOH, учитывая, что гидроксид бериллия проявляет амфотерные свойства.

193. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) Na3PO4 и CaCl2; б) K2CO3 и BaCl2; в) Sn(OH)2 и KOH, учитывая, что гидроксид олова (II) проявляет амфотерные свойства.

194. Составьте молекулярные уравнения реакций, которые выражаются ионно-молекулярными уравнениями:

а) Fe(OH)3 + 3H+ = Fe3+ + 3H2O

б) Cо2+ + 2OH - = Cо(OH)2

в) H+ + NO2 - = HNO2

195. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) CоS и HCl; б) Ba(OH)2 и CоCl2; в) Cr(OH)3 и NaOH, учитывая, что гидроксид хрома (III) проявляет амфотерные свойства.

196. Составьте молекулярные уравнения реакций, которые выражаются ионно-молекулярными уравнениями:

а) Zn2+ + H2S = ZnS + 2H+

б) HCO3 - + H+ = H2O + CO2

в) Ag+ + Cl - = AgCl

197. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) H2SO4 и Ba(OH)2; б) FeCl3 и NaOH; в) CH3COONa и HCl.

198. Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между: а) CuCl2 и KOH; б) NiSO4 и (NH4)2S; в) MgCO3 и HNO3.

199. Составьте молекулярные уравнения реакций, которые выражаются ионно-молекулярными уравнениями:

а) Be(OH)2 + 2OH - = BeO22- + 2H2O

б) CН3COO - + H+ = CH3COOH

в) Ba2+ + SO42 - = BaSO4

200. Какие из веществ: NaCl, NiSO4, Be(OH)2, NaHCO3 будут взаимодействовать с раствором гидроксида натрия, учитывая, что гидроксид бериллия проявляет амфотерные свойства. Выразите эти реакции молекулярными и ионно-молекулярными уравнениями.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: