double arrow

Теоретическая часть



Тепловым эффектом химической реакции или какого-либо процесса называется количество теплоты, выделенной или поглощенной системой при отсутствии полезной работы и при одинаковой температуре исходных и конечных веществ. Тепловой эффект реакции зависит от агрегатного состояния и кристаллической модификации реагирующих веществ.

Химические реакции обычно протекают при постоянном давлении (открытая колба) или при постоянном давлении (в автоклаве), то есть являются соответственно изобарными (V=const) или изохорными (Р=const) процессами.

Процессы, сопровождающиеся выделением теплоты, называются экзотермическими а процессы, при которых теплота поглощается, называются эндотермическими.

В термохимических расчетах используют термохимические уравнения. В них указывают тепловой эффект реакции, фазовое состояние и полиморфную модификацию реагирующих и образующихся веществ. (г-газовое; ж-жидкое; к-кристаллическое, т-твердое; р-растворенное и др.). Например:

S(ромб.) + О2(г)=SО2 (г), ΔΗ°298 = -296,9 кДж

Термохимические расчеты проводят, используя энтальпии (теплоты) образования веществ. Под энтальпией образования понимают тепловой эффект реакции образования 1 моль вещества их простых. Обычно используют стандартные энтальпии образования (ΔΗ°обр. 298 или ΔΗ°f, 298). Стандартные энтальпии образования простых веществ, устойчивых в стандартных условиях, приняты равными нулю.




В основе термохимических расчетов лежит закон Гесса: тепловой эффект химической реакции зависит только от начального и конечного состояния системы и не зависит от ее промежуточных состояний.

Следствия закона Гесса:

· Тепловой эффект разложения какого-либо соединения равен, но противоположен по знаку тепловому эффекту его образования.

ΔΗразл. = -ΔΗобр.

· Если две реакции из различных начальных состояний приходят к одному конечному, то разность их тепловых эффектов равна тепловому эффекту перехода из одного начального состояния в другое.

· Если две реакции имеют одинаковые начальные состояния и разные конечные, то разность их тепловых эффектов равна тепловому эффекту перехода из одного конечного состояния в другое.

С(графит)+½О2 (г)=СО(г); ΔΗ2 = -110,5 кДж

СО(г)+½О2 (г)=СО2 (г); ΔΗ3 = -283,0 кДж

С(графит)+О2 (г)=СО2 (г); ΔΗ1 =ΔΗ2+ΔΗ3 = -393,5 кДж

Закон Гесса позволяет рассчитывать теплоты образования нестабильных соединений и тепловые эффекты реакций, которые нельзя осуществить экспериментально.

Согласно закону Гесса тепловой эффект реакции представляет собой разность между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ. Для реакции

аА + bВ +…=dD + еЕ + …



тепловой эффект Н определяется равенством

ΔΗ° = (dΔΗ°f,D + еΔΗ°f,E+…) - (аΔΗ°f,A + bΔΗ°f,B+…)

На практике при проведении термохимических измерений наиболее часто определяют следующие тепловые эффекты: теплоту образования, теплоту разложения, теплоту сгорания, теплоту растворения и теплоту нейтрализации.

Теплотой образования вещества называется тепловой эффект реакции образования 1 моля сложного вещества из простых, наиболее устойчивых при температуре 25˚С (2980К) и р = 101,3 кПа. Например:

½Н2(г) + ½СI2(г) = НСI(г) - 95,05 кДж

Теплотой разложения вещества называется количество теплоты, выделяемое или поглощаемое при разложении 1 моля сложного вещества на более простые соединения, например:

СаСО3 = СаО + СО2 + 179,08 кДж

Теплотой сгорания называется тепловой эффект реакции окисления 1 моля данного соединения кислородом с образованием высших оксидов соответствующих элементов, например:

С2Н2 + 2,5О2 = 2СО2 + Н2О - 1299,6 кДж

Теплотой растворения называется количество теплоты, которое выделяется или поглощается при растворении 1 моля вещества в таком объеме растворителя, чтобы при дальнейшем разбавлении раствора не наблюдалось изменения теплового эффекта.

При растворении соли в воде протекают одновременно два процесса:

3) разрушение кристаллической решетки вещества. При этом тепло поглощается (Q1);

4) гидратация ионов. При этом тепло выделяется (Q2).

Тепловой эффект растворения соли будет равен сумме тепловых эффектов этих процессов:

Qраств.= Q1+ Q2

Поэтому вещества, обладающие прочной кристаллической решеткой и слабо гидратирующиеся в растворе, растворяются с поглощением тепла. Вещества с невысокой прочностью кристаллической решеткой, образующие в растворе сильно гидратированные ионы растворяются с выделением тепла.

Теплота растворения вещества увеличивается с разбавлением, но лишь до 100- 300 моль растворителя на 1 моль растворяемого вещества. Дальнейшее разбавление раствора практически не изменяет величину теплоты растворения.

Теплотой нейтрализации называется количество теплоты, выделяющееся при взаимодействии эквивалента кислоты с эквивалентом щелочи. При нейтрализации водных растворов сильных кислот сильными основаниями выделяется всегда одинаковое количество тепла, равное 57,11 кДж на 1 моль-эквивалент кислоты или основания (закон постоянства теплоты нейтрализации). Это объясняется процессом взаимодействия ионов:

Н3О+ + ОН- = 2Н2О - 57,11 кДж (13,65 Ккал)

Сказанное справедливо для растворов сильных кислот и оснований. В случае растворов слабой кислоты или основания процесс взаимодействия сопровождается диссоциацией слабого электролита. Диссоциация имеет характерный для каждого вещества тепловой эффект (тепловой эффект диссоциации)..

Второй закон термодинамики устанавливает возможность, направление и предел протекания самопроизвольных процессов. Чаще всего встречаются несколько формулировок второго закона:

Теплота не может сама собой переходить от менее нагретого тела к более нагретому.

Невозможен вечный двигатель второго рода, т. е. невозможна такая периодически действующая машина, которая позволяла бы получать работу только за счет охлаждения источника теплоты.

Эти формулировки связаны друг с другом и вытекают одна из другой. Обе они указывают на невозможность самопроизвольного протекания определенных процессов. Для оценки возможности протекания процесса в том или ином направлении введена величина – энтропия. Энтропия – это мера беспорядка.

При переходе системы из более упорядоченного в менее упорядоченное состояние энтропия возрастает (ΔS>0). В случае перехода из менее упорядоченного состояния в более упорядоченное энтропия системы уменьшается (ΔS<0).

Вопросы для подготовки

14. Предмет химической термодинамики.

15. Основные понятия термодинамики.

16. Почему закон постоянства теплоты нейтрализации применяется только для сильных кислот и оснований?

17. Первый закон термодинамики. Энтальпия.

18. Какие процессы протекают при растворении соли в воде?

19. Тепловой эффект реакции, его зависимость от температуры.

20. Закон Гесса и следствия из него. Термохимические уравнения.

21. Расчет энтальпий химических реакций. Стандартные термодинамические величины.

22. Второй закон термодинамики.

23. Энтропия.

24. Третий закон термодинамики.

25. Термодинамические потенциалы Гиббса и Гельмгольца.



Сейчас читают про: