Что такое спектральная плотность сигнала

В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье.

Пусть сигнал s(t) задан в виде непериодической функции, причем он существует только на интервале (t1,t2) (пример - одиночный импульс). Выберем произвольный отрезок времени T, включающий в себя интервал (t1,t2).


потом мы находим s(t) с помощью разложения п ряду Фурье бляяяяяя и затем в пределе получаем


т.е.

*


Пределы интегрирования можно для общности поставить бесконечными, так как все равно там, где s(t) равна нулю, и интеграл равен нулю.

Выражение для спектральной плотности называют прямым преобразованием Фурье. Обратное преобразование Фурье определяет временную функцию сигнала по его спектральной плотности:

**


 
 

Прямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности
определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент

 
 

называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S(w) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w. Его размерность - [сигнал/частота].

7. Применение БПФ для моделирования искажений сигналов в линейных цепях

Линейная цепь – состоит из линейных элементов (емкость, сопротивление)

Искажение сигнала - это искажение сигнала. Обусловленое не линейностью

Сопротивление – элемент, который энергию превращает в тепло.

Конденсатор - накапливает заряды.

В механике аналогией конденсатору служит пружина(элемент,который запасает энергию).

Ток течет через конденсатор, когда меняется напряжение. Чем больше скорость изменения напряжения, тем больше ток.

Самый простой сигнал: последовательность прямоугольных импульсов. Искажение наиболее просто выявить, так, как прямоугольный сигнал имеет крутые фронты.

Если пропустить сигнал прямоугольных импульсов,через простейшую Rc цепочку(фильрр низких частот),то спектр этого сигнала исказится,так,как фильтр не пропускает импульсы на больших частотах.

Активными элементами считаются источники электрической энергии (источники напряжения и тока), к пассивным элементам относятся резисторы, катушки индуктивности, электрические конденсаторы.

Количественные характеристики элементов электрической цепи называются ее параметрами.

Электрические цепи с постоянными параметрами - это такие такие цепи, в которых сопротивления резисторов R, индуктивность катушек L и емкость конденсаторов С являются постоянными, не зависящими от действующи в цепи токов и напряжений. Такие элементы называются линейными.

Если сопротивление резистора R не зависит от тока, то линейная зависимость между падением напряжения и током выражается законом Ома ur = R х ir, а вольт-амперная характеристика резистора (представляет собой прямую линию (рис. 1,а).

Если индуктивность катушки не зависит от величины (протекающего в ней тока, то потокосцепление самоиндукции катушки ψ прямо пропорционально этому току ψ= L х il (рис. 1,б).

Наконец, если емкость конденсатора С не зависит от приложенного к обкладкам напряжения uc то заряд q, накопленный на пластинах, и напряжение uc связаны между собой линейной зависимостью графически показанной на рис. 1,в.

Рис. 1. Характеристики линейных элементов электрической цепи: а - вольт-амперная характеристика резистора, б - зависимость потокосцепления от тока в катушке, в - зависимость заряда конденсатора от напряжения на нем.

Линейность сопротивления, индуктивности и емкости носит условный характер, так как в действительности все реальные элементы электрической цепи являются нелинейными. Так, при прохождении тока через резистор последний нагревается и его сопротивление изменяется.

Электрическая цепь, состоящая из линейных элементов, называется линейной электрической цепью. Процессы в таких цепях описываются линейными алгебраическими или дифференциальными уравнениями. Для анализа процессов в линейных электрических цепях используются законы Кирхгофа.

! Писала, то что запомнила с сегодняшней консультации и с лекций

8. Применение БПФ для фильтрации сигналов

Под фильтрацией подразумевается выделение полезного сигнала из его смеси с мешающим сигналом - шумом. Наиболее распространенный тип фильтрации - частотная фильтрация. Если известна область частот, занимаемых полезным сигналом, достаточно выделить эту область и подавить те области, которые заняты шумом.

Рисунок 19 иллюстрирует технику фильтрации с применением БПФ. Сначала синтезируется исходный сигнал, представленный 128 отсчетами вектора v. Затем к этому сигналу присоединяется шум с помощью генератора случайных чисел (функция rnd) и формируется вектор из 128 отсчетов зашумленного сигнала.


Рисунок 19. Фильтрация аналоговых сигналов

Используя прямое БПФ, сигнал с шумом преобразуется из временной области с частотную, что создает вектор f из 64 частотных составляющих. Затем выполняется фильтрующее преобразование, эффективность которого оценивается параметром a. Фильтрующее преобразование удобно выполнять с помощью функции Хевисайда

Ф(х) Ступенчатая функция Хевисайда. Возвращает 1, если х >= 0; иначе 0.

Отфильтрованный сигнал (вектор g) подвергается обратному БПФ и создает вектор выходного сигнала h.

Сравнение временных зависимостей исходного и выходного сигналов, показывает, что выходной сигнал почти полностью повторяет входной и в значительной мере избавлен от высокочастотных шумовых помех, маскирующих полезный сигнал.

9. Аналогии цепей различной физической природы;


Моделирование аналоговое, один из важнейших видов моделирования, основанный на аналогии (в более точных терминах - изоморфизме) явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими (дифференциальными, алгебраическими или какими-либо другими) уравнениями.

Простой пример - две системы, первая из которых имеющая механическую природу, состоит из оси, передающей вращение через пружину и маховик, погруженный частично в вязкую тормозящую жидкость, валу, жестко связанному с маховиком. Вторая система - электрическая - состоит из источника электродвижущей силы, соединённого через катушку индуктивности, конденсатор и активное сопротивление со счётчиком электрической энергии. Если подобрать значения индуктивности, ёмкости и сопротивления так, чтобы они определённым образом соответствовали упругости пружины, инерции маховика и трению жидкости, то эти системы обнаружат структурное и функциональное сходство (даже тождество), выражаемое, в частности, в том, что они будут описываться одним и тем же дифференциальным уравнением с постоянными коэффициентами вида

Это уравнение может служить «теоретической моделью» обеих систем, любая же из них - «экспериментальной моделью» этого уравнения и «аналоговой моделью» друг друга. Эта аналогия лежит в основе электрического моделирования механических систем: электрические модели гораздо более удобны для экспериментального исследования, нежели моделируемые механические. Другой традиционной областью применения Моделирование аналоговое является исследование процессов теплопроводности, основанное на электротепловой и гидротепловой аналогиях (в первой из них аналогами температурного поля в твёрдом теле и теплоёмкости служат соответственно поле электрического потенциала в электропроводной среде и ёмкости некоторых конденсаторов, во второй - температура моделируется уровнем воды в вертикальных стеклянных сосудах, образующих гидравлическую модель, теплоёмкость элементарного объёма - площадью поперечного сечения этих сосудов, а тепловое сопротивление - гидравлическим сопротивлением соединяющих сосуды трубок). Для исследования лучистого (радиационного) переноса тепла часто применяют метод светового моделирования, при котором потоки теплового излучения заменяют подобными им потоками излучения светового. Таким путём определяют угловые коэффициенты излучения, а если оптические свойства (степень черноты и поглощательные способности) соответствующих поверхностей у модели и натуры тождественны, то и распределение тепловых потоков по поверхностям, входящим в систему лучистого теплообмена.

До создания цифровых электронных вычислительных машин в конце 1940-х гг. Моделирование аналоговое было основным способом «предметно-математического моделирования» (см. об этом в ст. Моделирование) многих процессов, связанных с распространением электромагнитных и звуковых волн, диффузии газов и жидкостей, движения и фильтрации жидкостей в пористых средах, кручения стержней и др. (в связи с чем его часто называли тогда просто «математическим моделированием»), причём для каждой конкретной задачи моделирования строилась своя «сеточная» модель (основными её элементами служили соединённые в плоскую сеточную схему электрические сопротивления различных видов), а аналоговые вычислительные машины позволяли проводить Моделирование аналоговое целых классов однородных задач. В настоящее время значение Моделирование аналоговое значительно уменьшилось, поскольку моделирование на ЭВМ имеет большие преимущества перед ним в отношении точности моделирования и универсальности. В достаточно фиксированных и специальных задачах свои преимущества (простота, а тем самым и дешевизна технического выполнения) имеет и Моделирование аналоговое Употребительно также и совместное использование обоих методов (см. Гибридная вычислительная система).

10. Математические модели накопителей потенциальной и кинетической энергии;

Потенциальная энергия — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил

Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: