Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Метод комплексных амплитуд




Расчет линейных электрических

Цепей переменного тока

Учебно-методическая разработка к выполнению контрольных заданий

Г. Пенза 2005 г.

УДК 621.3.024

Р 24.

Даны методические указания к выполнению расчетно-графических работ по анализу цепей переменного тока.

Работа выполнена на кафедре «Электроника и электротехника» Пензенской государственной технологической академии и предназначена для студентов специальностей 2201, 2102, 1201, 0706, 1706, 3302, 0305.

Ил. 14, табл. 5, библ. назв. 3.

Составители: Ю.А. Смагин, Л.М. Вдовина, Фролов Г.В.

Рецензент: Зав. каф. «ВМиС» ПГТА, процессор Сальников И.И.


Общие методические указания

Расчет линейных цепей переменного тока сводится к расчету токов в ветвях и напряжений на отдельных участках цепи. При одном источнике электрической энергии в схеме основными расчетными уравнениями являются уравнения, составленные на основе законов Ома и Кирхгофа.

Широкое распространение на практике получил метод комплексных амплитуд, использующий алгебру комплексных чисел и позволяющий применять все методы расчетов цепей постоянного тока к цепям переменного тока.


Метод комплексных амплитуд

Метод комплексных амплитуд основан на представлении синусоидальных функций через экспоненты с мнимым аргументом. Аналитически комплексное число можно представить в алгебраической, тригонометрической и показательной форме:

,

где и - вещественная и мнимая составляющая, - модуль комплексного числа, - аргумент комплексного числа.

Геометрически комплексное число представляется вектором на комплексной плоскости с прямоугольными (рис. 1) или полярными координатами (рис. 2).

Рис. 1 Рис. 2

Модуль и аргумент комплексного числа можно найти из прямоугольного треугольника (рис. 1):

; .

Разложим по формуле Эйлера выражение :

.

Мнимая часть этого выражения является синусоидально-изменяющимся напряжением:

.

На плоскости комплексная амплитуда изображается вектором, аргумент которого равен начальной фазе , а длина пропорциональна вещественной амплитуде (рис. 3).

.

Рис.3

Комплекс действующего значения равен комплексной амплитуде, деленной на .

.

Комплексное сопротивление представляет собой отношение комплексных амплитуд напряжения и тока:

,

- активное сопротивление;

- модуль реактивного сопротивления;

- модуль индуктивного сопротивления;

- модуль емкостного сопротивления;

- модуль комплексного сопротивления.

Закон Ома для цепи синусоидального тока запишется в виде: ,

где - комплекс действующего значения тока;




- комплекс действующего значения э.д.с.;

- комплексное сопротивление.

Первый закон Кирхгофа для цепи синусоидального тока записывается, как .

Алгебраическая сумма комплексных амплитуд токов, сходящихся в узле, равна нулю.

Второй закон Кирхгофа выражается, как

.

Алгебраическая сумма комплексных амплитуд падений напряжений на элементах контура равна алгебраической сумме комплексных амплитуд э.д.с. источников этого контура.

В таблице 1 приведены элементы , , , уравнения для мгновенных значений и , связь между ними, закон Ома, векторные диаграммы.


Таблица 1.

  Резисторный Индуктивный Емкостной
Мгновенные значения и . . . .
Связь между и . ; ; . ; ; . ; ; .
Закон Ома в комплексной форме. или , где - комплексное сопротивление; - комплексная проводимость. или , где - индуктивное сопротивление. или , где - емкостное сопротивление.
Векторная диаграмма , . . ; . ; .

Правильность расчетов линейных электрических цепей переменного тока проверяется по балансу активной мощности.

,

где - комплекс действующего значения э.д.с.;

- сопряженный комплекс действующего значения тока, например, , то ;

- действующее значение тока в ветви с активным сопротивлением .

Мощность в цепи переменного тока можно подсчитать и по действующим значениям тока и напряжения.

; ; ;

где - активная мощность, [Вт];

- реактивная мощность, [ВАр];

- полная мощность, [ВА];



- действующие значения напряжения и тока соответственно;

- угол сдвига фаз между напряжением и током, (рис. 4).

Рис. 4





Дата добавления: 2015-05-26; просмотров: 14755; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома - страшная бессонница, которая потом кажется страшным сном. 8774 - | 7147 - или читать все...

Читайте также:

 

3.81.29.226 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.004 сек.