Билет №2 БИЛЕТ №3 определение базиса линейного пространства теорема о единственности разложения вектора по базису

Понятие линейного пространства | Примеры

Линейное, или векторное пространство над полем P — это непустое множество L, на котором введены операции

1. сложения, то есть каждой паре элементов множества ставится в соответствие элемент того же множества, обозначаемый и

2. умножения на скаляр (то есть элемент поля P), то есть любому элементу и любому элементу ставится в соответствие единственный элемент из , обозначаемый .

При этом на операции накладываются следующие условия:

1. , для любых (коммутативность сложения);

2. , для любых (ассоциативность сложения);

3. существует такой элемент , что для любого (существование нейтрального элемента относительно сложения), в частности L не пусто;

4. для любого существует такой элемент , что (существование противоположного элемента относительно сложения).

5. (ассоциативность умножения на скаляр);

6. (унитарность: умножение на нейтральный (по умножению) элемент поля P сохраняет вектор).

7. (дистрибутивность умножения на вектор относительно сложения скаляров);

8. (дистрибутивность умножения на скаляр относительно сложения векторов).

Элементы множества L называют векторами, а элементы поля Pскалярами. Свойства 1-4 совпадают с аксиомами абелевой группы.

БИЛЕТ №3
ОПРЕДЕЛЕНИЕ БАЗИСА ЛИНЕЙНОГО ПРОСТРАНСТВА
теорема о единственности разложения вектора по базису

Определение. Система векторов векторного пространства над полем К называется порождающей (образующей) системой векторов этого векторного пространства, если она представляет любой его вектор, т.е. если найдется такой набор скаляров , что .

Определение. Система векторов векторного пространства называется минимальной порождающей системой, если при удалении из этой системы любого вектора она перестает быть порождающей системой.

Теорема. (О разложении вектора по базису.)

Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.

Доказательство. 1) Пусть L произвольная прямая (или ось) и –базис . Возьмем произвольный вектор . Так как оба вектора и коллинеарные одной и той же прямой L, то . Воспользуемся теоремой о коллинеарности двух векторов. Так как , то найдется (существует) такое число , что и тем самым мы получили разложение вектора по базису векторного пространства .

Теперь докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства :

и , где . Тогда и используя закон дистрибутивности, получаем:

.

Так как , то из последнего равенства следует, что , ч.т.д.

2) Пусть теперь Р произвольная плоскость и – базис . Пусть произвольный вектор этой плоскости. Отложим все три вектора от какой-нибудь одной точки этой плоскости. Построим 4 прямых. Проведемпрямую , на которой лежит вектор , прямую , на которой лежит вектор . Через конец вектора проведем прямую параллельную вектору и прямую параллельную вектору . Эти 4 прямые высекают параллелограмм. См. ниже рис. 3. По правилу параллелограмма , и , , – базис , – базис .

Теперь, по уже доказанному в первой части этого доказательства, существуют такие числа , что

и . Отсюда получаем:

и возможность разложения по базису доказана.

рис.3.

Теперь докажем единственность разложения по базису. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства : и . Получаем равенство

, откуда следует . Если , то , а т.к. , то и коэффициенты разложения равны: , . Пусть теперь . Тогда , где . По теореме о коллинеарностидвух векторов отсюда следует, что . Получили противоречие условию теоремы. Следовательно, и , ч.т.д.

3) Пусть – базис и пусть произвольный вектор. Проведем следующие построения.

Отложим все три базисных вектора и вектор от одной точки и построим 6 плоскостей: плоскость, в которой лежат базисные векторы , плоскость и плоскость ; далее через конец вектора проведем три плоскости параллельно только что построенным трем плоскостям. Эти 6 плоскостей высекают параллелепипед:

рис.4.

По правилу сложения векторов получаем равенство:

. (1)

По построению . Отсюда, по теореме о коллинеарности двухвекторов, следует, что существует число , такое что . Аналогично, и , где . Теперь, подставляя эти равенства в (1), получаем:

(2)

и возможность разложения по базису доказана.

Докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису :

и . Тогда

. (3)

Заметим, что по условию векторы некомпланарные, следовательно, они попарно неколлинеарные.

Возможны два случая: или .

а) Пусть , тогда из равенства (3) следует:

. (4)

Из равенства (4) следует, что вектор раскладывается по базису , т.е. вектор лежит в плоскости векторов и, следовательно, векторы компланарные, что противоречит условию.

б) Остается случай , т.е. . Тогда из равенства (3) получаем или

. (5)

Так как – базис пространства векторов лежащих в плоскости, а мы уже доказали единственность разложения по базису векторов плоскости, то из равенства (5) следует, что и , ч.т.д.

Теорема доказана.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: