Термодинамическая работа

Энергия любой системы, вообще говоря, зависит не только от свойств самой системы, но также и от внешних условий. Внешние условия, в которых находится система, можно характеризовать заданием некоторых величин, называемых внешними параметрами. Одним из таких параметров, как уже отмечалось, является объем системы, Взаимодействие тел, при котором происходит изменение их внешних параметров, называется механическим взаимодействием, а процесс передачи энергии от одного тела к другому при таком взаимодействии – работой. Термин «работа» используется и для обозначения физической величины, равной энергии, переданной (или полученной) телом при совершении работы.

В механике работа определяется как произведение проекции силы на направление перемещения на величину перемещения. Работа совершается при действии на движущееся тело силы и равна изменению его кинетической энергии. В термодинамике движение тела как целого не рассматривается. Здесь работа, производимая системой (или над системой), связана со смещением ее границ, т.е. с изменением ее объема. Это имеет место, например, при расширении (или сжатии) газа, находящегося в цилиндре под поршнем. При равновесных процессах элементарная работа , совершаемая газом (или над газом) при бесконечно малом изменении объема на определится как

(5.4)

где dh – бесконечно малое смещение поршня (границы системы), p – давление газа. Видим, что при расширении газа () совершаемая им работа положительна (), а при сжатии ) – отрицательна ().

Таким же выражением определяется работа, совершаемая любой термодинамической системой (или над системой) при бесконечно малом изменении объема. Из формулы (5.4) следует, что если сама система совершает работу (что имеет место при расширении), то работа положительна, если же работа совершается над системой (при сжатии), то совершаемая ею работа отрицательна. Как видим, в термодинамике знаки работы противоположны знакам работы в механике.

При конечном изменении объема от V 1 до V 2 работу можно определить, проинтегрировав элементарную работу в пределах от V 1 до V 2:

(5.5)

Численное значение работы равно площади криволинейной трапеции, ограниченной кривой и прямыми и (рис. 5.1). Поскольку площадь, ограниченная осью V и кривой p (V), различна, то будет различна и термодинамическая работа. Отсюда следует, что термодинамическая работа зависит от пути перехода системы из состояния 1 в состояние 2 и при замкнутом процессе (цикле) она не равна нулю. На этом основана работа всех тепловых двигателей (подробно об этом будет сказано в п. 5.7).

Используем эту формулу для получения работы газа при различных изопроцессах. При изохорном процессе V = const, и поэ-

Рис. 5.1

тому работа A = 0. При изобарном процессе p = const работа . При изотермическом процессе чтобы произвести интегрирование по формуле (5.5), следует в ее подынтегральной функции выразить p через V по формуле закона Клапейрона – Менделеева:

где – число молей газа. С учетом этого получим

(5.6)

Внутренняя энергия, согласно формуле (5.1), может изменяться как за счет изменения (повышения или понижения) уровней энергии системы, так и за счет перераспределения вероятностей ее различных состояний, т.е. за счет переходов системы из одних состояний в другие. Выполнение термодинамической работы связано только со смещением (или деформацией) уровней энергии системы без изменения распределения ее по состояниям, т.е. без изменения вероятностей Так, в случае системы, состоящей из невзаимодействующих частиц (как, например, в случае идеального газа), когда можно говорить об энергиях отдельных частиц , выполнение работы связано с изменением энергии отдельных частиц () при неизменном числе частиц на каждом энергетическом уровне. Схематически на примере простейшей двух уровневой системы это показано на рис. 5.2. Напри-

Рис. 5.2

мер, при сжатии газа поршнем поршень, перемещаясь, сообщает одинаковую энергию всем сталкивающимся с ним молекулам, которые передают энергию молекулам следующего слоя и т.д. В результате возрастает энергия каждой частицы на одну и ту же величину. В качестве другого простейшего примера зависимости уровней энергии системы от ее внешнего параметра можно привести выражение для энергии микрочастицы в одномерной бесконечно глубокой потенциальной яме

где m – масса частицы, l – размер области движения частицы, n – целое число, исключая нуль. Внешним параметром в данном случае является ширина ямы . При изменении ширины ямы на уровни энергии смещаются на При увеличении ширины ямы уровни энергии сдвигаются вниз , а при уменьшении – вверх

В отличие от механической работы, которая равна изменению кинетической энергии тела, термодинамическая работа равна изменению его внутренней энергии.

Следует отметить также, что термодинамическая работа, как и работа механическая, совершается при протекании процесса изменения состояния, поэтому она зависит от вида процесса, и функцией состояния не является.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: