Для упрощения вычисления некоторых пределов можно использовать следующую теорему, основанную на эквивалентности бесконечно малых функций.
Теорема 6.1. Пусть
и
,
и
– попарно эквивалентные бесконечно малые функции при
, т.е.
и
при
. Тогда если существует
, то существует и
, при этом выполняется равенство
. Другими словами, предел отношения двух бесконечно малых функций не изменится, если их заменить эквивалентными бесконечно малыми функциями. Сказанное справедливо и для эквивалентных бесконечно малых функций при
.
Примеры 6.1. Найти пределы, используя эквивалентные бесконечно малые:
1)
.
Решение: В данном примере имеем дело с отношением двух бесконечно малых функций: числитель и знаменательстремятся к нулю при
. Поэтому для вычисления предела воспользуемся эквивалентностью бесконечно малых функций:
и
при
. Тогда
.
2)
.
Решение: В данном примере также имеем дело с отношением двух бесконечно малых функций: числитель и знаменательстремятся к нулюпри
. Поэтомудля раскрытия неопределенности заменим числитель эквивалентной бесконечно малой функцией:
, а знаменатель разложим на множители:
.
3)
.
Решение: В данном примере снова имеем дело с отношением двух бесконечно малых функций: числитель и знаменательстремятся к нулюпри
. Тогда для раскрытия неопределенности заменим числитель эквивалентной бесконечно малой функцией:
и далее воспользуемся формулой разности квадратов:
.