Занятие №2: Транспортные системы клетки

ЗАНЯТИЕ №1: Биоэнергетика и метаболизм клетки.

Цель:

1. Ознакомить студентов с организацией учебного процесса на кафедре

2. Сформировать представление о предмете и основных понятиях физиологии клетки как основе для понимания процессов жизнедеятельности, протекающих в целостном организме.

Вопросы для подготовки

1. Предмет исследования и основные методы исследования в физиологии клетки.

2. Физиология клетки как основа для понимания процессов жизнедеятельности организма в целом.

3. Основные понятия физиологии: гомеостаз, клеточный гомеостаз, физиологическая функция, физиологическая реакция. Системный принцип организации жизнедеятельности организма, Клеточный и субклеточный уровень организации функций.

4. Морфофункциональная характеристика животной клетки. Строение и роль различных органелл в осуществлении клеточных функций.

5. Строение свойства и функции цитоплазматической мембраны.

6. Энергетические процессы в клетке с позиции классической термодинамики.Понятие свободной энергии и энтропийных процессов, сопровождающих жизнедеятельность.Устойчивое термодинамическое неравновесие.

7. Основные пути превращения энергии в клетке. Понятие об ассимиляции и диссимиляции. Ферменты и скорость реакций. Роль АТФ.

8. Клеточный метаболизм. Пластическая и энергетическая функции питательных веществ. Энергетическая и физиологическая ценность белков, жиров и углеводов для жизнедеятельности клеток.

Домашнее задание:

1. Схематично изобразить структуру клетки и указать основные ее элементы.

 

 

 

2. Дайте краткую функциональную характеристику органеллам клетки.

Органелла - это крошечная клеточная структура, которая выполняет определенные функции внутри клетки. Органеллы встроены в цитоплазму эукариотических и прокариотических клеток. В более сложных эукариотических клетках органеллы часто окружены собственной мембраной. Подобно внутренним органам тела, органеллы специализированы и выполняют конкретные функции, необходимые для нормальной работы клеток. Они имеют широкий круг обязанностей: от генерирования энергии до контроля роста и размножения клеток.

Ядро - связанная с мембраной структура, которая содержит наследственную (ДНК) информацию, а также контролирует рост и размножение клетки. Это обычно самая важная органелла в клетке. Эндоплазматический ретикулум - обширная сеть трубочек и карманов, синтезирующая мембраны, секреторные белки, углеводы, липиды и гормоны. Аппарат (комплекс) Гольджи - структура, которая отвечает за производство, хранение и доставку определенных клеточных веществ, особенно из эндоплазматического ретикулума.

Митохондрии, как производители энергии, преобразуют энергию в формы, которые может использовать клетка. Они также участвуют в других процессах, таких как клеточное дыхание, деление, рост и гибель клеток. Пероксисомы, как и лизосомы связаны мембраной и содержат ферменты. Они способствуют детоксикации спирта, образует желчную кислоту и разрушает жиры. Вакуоль - заполненные жидкостью замкнутые структуры, чаще всего встречаются в растительных клетках и грибах. Они отвечают за широкий спектр важных функций, включая хранение питательных веществ, детоксикацию и вывод отходов.

Рибосомы -органеллы, состоящие из РНК и белков и отвечают за биосинтез белка. Рибосомы расположены в цитозоле или связаны с эндоплазматическим ретикулумом. Хлоропласты - пластиды, содержащиеся в клетках растений, но отсутствующие в животных клетках. Хлоропласты поглощают энергию солнечного света для процесса фотосинтеза. Клеточная стенка - жесткая внешняя стенка расположенная рядом с плазматической мембраной в большинстве растительных клеток, обеспечивающая поддержку и защиту клетки. Центриоли - цилиндрические структуры встречаются в клетках животных и помогают организовать сборку микротрубочек во время деления клеток. Реснички и жгутики - волосковидные образования с наружной стороны некоторых клеток, которые осуществляют клеточною локомоцию. Они состоят из специализированных групп микротрубочек, называемых базальными телами. Аппарат, или комплекс, Гольджи — органелла, представленная мембранными структурами, локализованными в одном месте. Скопление мембран называются диктиосомой, в которой в виде цистерн упорядочены мембранные мешки. На периферии аппарата встречаются мелкие вакуоли (везикулы), которые образуются в результате отделения от краёв цистерн. Комплекс Гольджи участвует в накоплении, сортировке и выведении веществ, синтезированных в ЭПР. Вместе с гладким ЭПР аппарат Гольджи участвует в формировании лизосом. Клеточный центр — центр организации микротрубочек, обеспечивающий их образование и рост. Клеточный центр играет важную роль в образовании цитоскелета и делении клетки. Центросомы, входящие в состав клеточного центра, участвуют в образовании веретена деления и задают полюса клетки. Клеточный центр расположен вблизи ядра и окружен уплотненным матриксом.

Согласно симбиотической теории предполагается, что митохондрии, хлоропласты и реснички возникли в результате симбиоза свободноживущих бактерий и прокариот-хозяев. Уточняется, что функция клеточного дыхания у митохондрий и процесс фотосинтеза у хлоропластов появились задолго до формирования полноценных эукариотических организмов.

 

 

3. Изобразите микроструктуру цитоплазматической мембраны и укажите ее основные элементы.

гликолипид
Липидный слой
Интегральный белок
Перефирические белки
Интегральный белок
гликокализ

 

4. Дайте определение понятию: гомеостаз

Гомеостаз - постоянство внутренней среды (крови, лимфы, тканевой жидкости). Это устойчивость физиологических функций организма. Это основное свойство, отличающее живые организмы от неживого. Чем выше организация живого существа, тем более оно независимо от внешней среды. Внешняя среда - это комплекс факторов, определяющий экологический и социальный микроклимат, действующий на человека

5. Дайте определение понятию физиологическая функция

 

Физиологическая функция (functio — деятель­ность) — проявления жизнедеятельности организма и его частей, име­ющие приспособительное значение и направленные на достижение по­лезного результата. В основе функции лежит обмен веществ, энергии и информации

 

6. Дайте определение понятию физиологическая реакция

 

Реакция (лат. re… — против + лат. actio — действие) — действие, возникающее в ответ на какое-либо воздействие.

 

 

7. Дайте определение понятиям: ассимиляция и диссимиляция.

8. Ассимиляция (уподобление) — совокупность процессов биосинтеза органических веществ с затратой энергии в живом организме. Синтез высокомолекулярных соединений (белков, нуклеиновых кислот, полисахаридов, липидов). Невозможна без энергии. Синоним слова анаболизм.

9. В ходе ассимиляции простые вещества (сложные первоначально расщепляются до простых), неспецифические для какого-либо организма, превращаются в сложные, характерные для данного вида соединения (усваиваются).

10. Диссимиляция — процесс метаболического распада, разложения на более простые вещества (дифференциация) или окисления какого-либо вещества, обычно протекающий с высвобождением энергии в виде тепла и в виде АТФ. Катаболические реакции лежат в основе диссимиляции: утраты сложными веществами своей специфичности для данного организма в результате распада до более простых.

 

 

11. Дайте определение обмена веществ и энергии

Обмен веществ (метаболизм) – это совокупность всех химических реакций, которые происходят в организме. Все эти реакции делятся на 2 группы

1. Пластический обмен (анаболизм, ассимиляция, биосинтез) – это когда из простых веществ делаются (синтезируются) более сложные. Например:

· при фотосинтезе из углекислого газа и воды синтезируется глюкоза

· в клетках человека из простых органических веществ (аминокислот, глюкозы и т.п.) принесенных кровью от пищеварительной системы, синтезируются сложные органические вещества, например, из аминокислот – белки, из глюкозы – гликоген.

 

Энергетический обмен (катаболизм, диссимиляция, распад) – это когда сложные вещества распадаются до более простых, и при этом выделяется энергия. Например:

· в пищеварительной системе человека сложные органические вещества пищи (белки, жиры, углеводы) распадаются на более простые (белки на аминокислоты, углеводы на глюкозу), при этом выделяется энергия в виде тепла.

· глюкоза окисляется кислородом до углекислого газа и воды, при этом образуется энергия, которая запасается в 38 АТФ.

 

12. Укажите физиологическую роль белков, жиров и углеводов.

 

Белки

Белки - это высокомолекулярные азотистые соединения, основная и обязательная часть всех организмов. Белковые вещества участвуют во всех жизненно важных процессах. Например, обмен веществ обеспечивается ферментами, по своей природе относящимися к белкам. Белками являются и сократительные структуры, необходимые для выполнения сократительной функции мышц — актомиозин; опорные ткани организма — коллаген костей, хрящей, сухожилий; покровные ткани организма - кожа, ногти, волосы.
По составу белки делятся на: простые — протеины (при гидролизе образуются только аминокислоты и аммиак) и сложные— протеиды (при гидролизе образуются еще и небелковые вещества — глюкоза, липоиды, красящие вещества и др.).
Среди многочисленных пищевых веществ белкам принадлежит наиболее важная роль. Они служат источником незаменимых аминокислот и так называемого неспецифического азота, необходимого для синтеза белков.

От уровня снабжения белками в большой степени зависят состояние здоровья, физическое развитие, физическая работоспособность, а у детей раннего возраста — и умственное развитие. Достаточность белка в пищевом рационе и его высокое качество позволяют создать оптимальные условия внутренней среды организма, необходимые для роста, развития, нормальной жизнедеятельности человека и его работоспособности. Под влиянием белковой недостаточности могут развиваться такие патологические состояния, как отек и ожирение печени; нарушение функционального состояния органов внутренней секреции, особенно половых желез, надпочечников и гипофиза; нарушение условно-рефлекторной деятельности и процессов внутреннего торможения; снижение иммунитета; алиментарная дистрофия. Белки состоят из углерода, кислорода, водорода, фосфора, серы и азота, входящих в состав аминокислот — основных структурных компонентов белка. Белки различаются уровнем содержания аминокислот и последовательности их соединения. Различают белки животные и растительные.

В отличие от жиров и углеводов белки содержат кроме углерода, водорода и кислорода еще азот — 16%. Поэтому их называют азотсодержащими пищевыми веществами. Белки нужны животному организму в готовом виде, так как синтезировать их, подобно растениям, из неорганических веществ почвы и воздуха он не может. Источником белка для человека служат пищевые вещества животного и растительного происхождения. Белки необходимы прежде всего как пластический материал, это их основная функция: они составляют в целом 45% плотного остатка организма.

Белки входят также в состав гормонов, эритроцитов, некоторых антител, обладая высокой реактивностью.

В процессе жизнедеятельности происходит постоянное старение и отмирание отдельных клеточных структур, и белки пищи служат строительным материалом для их восстановления. Окисление в организме 1 г белка дает 4,1 ккал энергии. В этом и заключается его энергетическая функция. Большое значение имеет белок для высшей нервной деятельности человека. Нормальное содержание белка в пище улучшает регуляторную функцию коры головного мозга, повышает тонус центральной нервной системы.

При недостатке белка в питании возникает ряд патологических изменений: замедляются рост и развитие организма, уменьшается вес; нарушается образование гормонов; снижаются реактивность и устойчивость организма к инфекциям и интоксикациям.

Питательная ценность белков пищи зависит прежде всего от их аминокислотного состава и полноты утилизации в организме. Известны 22 аминокислоты, каждая имеет особое значение. Отсутствие или недостаток какой-либо из них ведет к нарушению отдельных функций организма (рост, кроветворение, вес, синтез белка и др.). Особенно ценны следующие аминокислоты: лизин, гистидин, триптофан, фенилаланин, лейцин, изолейцин, треонин, метионин, валин. Для маленьких детей большое значение имеет гистидин.

Некоторые аминокислоты не могут синтезироваться в организме и заменяться другими. Их называют незаменимыми. В зависимости от содержания заменимых и незаменимых аминокислот пищевые белки разделяются на полноценные, аминокислотный состав которых близок к аминокислотному составу белков человеческого тела и содержит в достаточном количестве все незаменимые аминокислоты, и на неполноценные, в которых отсутствуют одна или несколько незаменимых аминокислот. Наиболее полноценны белки животного происхождения, особенно белки желтка куриного яйца, мяса и рыбы. Из растительных белков высокой биологической ценностью обладают белки сои и в несколько меньшей степени — фасоли, картофеля и риса.

Неполноценные белки содержатся в горохе, хлебе, кукурузе и некоторых других растительных продуктах.

Физиолого-гигиенические нормы потребности в белках. Эти нормы исходят из минимального количества белка, которое способно поддержать азотистое равновесие организма человека, т.е. количество азота, введенного в организм с белками пищи, равно количеству азота, выведенного из него с мочой за сутки.

Суточное потребление пищевого белка должно полностью обеспечивать азотистое равновесие организма при полном удовлетворении энергетических потребностей организма, обеспечивать неприкосновенность белков тела, поддерживать высокую работоспособность организма и сопротивляемость его неблагоприятным факторам внешней среды. Белки в отличие от жиров и углеводов не откладываются в организме про запас и должны ежедневно вводиться с пищей в достаточном количестве.
Физиологическая суточная норма белка зависит от возраста, пола и профессиональной деятельности. Например, для мужчин она составляет 96-132 г, для женщин - 82-92 г. Это нормы для жителей больших городов. Для жителей малых городов и сел, занимающихся более тяжелой физической работой, норма суточного потребления белка увеличивается на 6 г. Интенсивность мышечной деятельности не влияет на обмен азота, но необходимо обеспечить достаточное для таких форм физической работы развитие мышечной системы и поддерживать ее высокую работоспособность.
Взрослому человеку в обычных условиях жизни при легкой работе требуется в сутки в среднем 1,3 —1,4 г белка на 1 кг веса тела, а при физической работе — 1,5 г и более (в зависимости от тяжести труда).
Содержание белка в дневном рационе детей должно быть выше, чем у взрослых (2,0-3,0 г), что связано с бурным физическим развитием и половым созреванием.
Жиры

Жиры - наиболее мощный источник энергии. Кроме того, жировые отложения («депо» жира) защищают организм от потери тепла и ушибов, а жировые капсулы внутренних органов служат им опорой и защитой от механических повреждений. Депонированный жир является основным источником энергии при острых заболеваниях, когда аппетит снижается и усвоение пищи ограничивается.

Источником жира являются животные жиры и растительные масла, а также мясо, рыба, яйца, молоко и молочные продукты. Жиры содержат насыщенные и ненасыщенные жирные кислоты, жирорастворимые витамины А, В, Е, лецитин и ряд других веществ, необходимых организму. Они обеспечивают всасывание из кишечника ряда минеральных веществ и жирорастворимых витаминов. Жировые ткани - активный резерв энергетического материала. Жиры улучшают вкус пищи и вызывают чувство сытости. Они могут образовываться из углеводов и белков, но в полной мере ими не заменяются.

Обеспечить потребности организма можно только сочетанием животных и растительных жиров, поскольку они дополняют друг друга жизненно важными веществами.

Суточная норма жира для взрослого человека — от 100 до 150 г при тяжелой физической работе, особенно на холоде. В среднем суточный рацион жира должен состоят на 60-70% из животного жира и на 30—40% — из растительного.

Углеводы

Углеводы являются главным источником энергии для человеческого организма, необходимой для жизнедеятельности всех клеток, тканей и органов, особенно мозга, сердца, мышц. В результате биологического окисления углеводов (а также жиров и, в меньшей степени, белков) в организме освобождается энергия 16,7 кДж (4 ккал) из 1г углеводов или белков, 37,76 кДж (9 ккал) из 1 г жиров.

Кроме того в организме углеводы и их производные входят в состав соединительной ткани; противодействуют накоплению кетоновых тел при окислении жиров; предотвращают свертывание крови в сосудах, препятствуют проникновению бактерий через клеточную оболочку и др.

Углеводные запасы человека очень ограничены, содержание их не превышает 1% массы тела. При интенсивной работе они быстро истощаются, поэтому углеводы должны поступать с пищей ежедневно. Суточная потребность человека в углеводах составляет 400-500 г, при этом примерно 80% приходится на крахмал.

С точки зрения пищевой ценности углеводы подразделяются на усваиваемые и неусваиваемые. Усваиваемые углеводы – моно- и олигосахариды, крахмал, гликоген. Неусваиваемые – целлюлоза, гемицеллюлозы, инулин, пектин, гумми, слизи.

Все усваиваемые углеводы расщепляются в желудочно-кишечном тракте до моносахаридов, а моносахариды далее всасываются из кишечника в кровь.

Неусваиваемые углеводы человеческим организмом не утилизируются, но они чрезвычайно важны для пищеварения и составляют так называемые пищевые волокна. Пищевые волокна выполняют следующие функции в организме человека:

—стимулируют моторную функцию кишечника;

—препятствуют всасыванию холестерина;

—играют положительную роль в нормализации состава микрофлоры кишечника, в ингибировании гнилостных процессов;

—оказывают влияние на липидный обмен, нарушение которого приводит к ожирению;

—адсорбируют желчные кислоты.

В настоящее время можно считать доказанным, что необходимо увеличивать в рационе пищевые волокна. Источником их являются ржаные и пшеничные отруби, овощи, фрукты. Суточная норма пищевых волокон составляет 20–25 г.

 

13. Укажите процессы в клетках организма, требующие затрат энергии АТФ

 

Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.

Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:

· Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

· Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

· АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.

· Также известна роль АТФ в качестве медиатора в синапсах и сигнального вещества в других межклеточных взаимодействиях (пуринергическая передача сигнала).

В организме АТФ синтезируется путём фосфорилирования АДФ:

АДФ + H3PO4 + энергия → АТФ + H2O.

Фосфорилирование АДФ возможно тремя способами:

субстратное фосфорилирование,

окислительное фосфорилирование,

фотофосфорилирование в процессе фотосинтеза у растений.

В первых двух способах используется энергия окисляющихся веществ. Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в цитоплазме в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.

Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальнойжизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

 

ЗАНЯТИЕ №2: Транспортные системы клетки.

Вопросы для подготовки

1. Обмен веществами между клеткой и окружающей средой. Диффузия. Закон диффузии Фика.Диффузия через мембранные поры.Диффузионное равновесие ионов. Равновесный потенциал, уравнения Нернста.

2. Активный транспорт. Na/K–насос и его электрогенность.Механизм формирования мембранного потенциала (МП), величина. МП как основа возбудимости.

3. Облегченная диффузия.

4. Активный транспорт и облегченная диффузия. Активный транспорт ионов. Первичная и вторичная системы активного транспорта в клетке.Концентрационный градиент Na+ как движущая сила мембранного транспорта

5. Эндо– и экзоцитоз, их значение.

6. Перенос веществ внутри клетки.Диффузия. Активный транспорт в мембранах органелл.Транспорт в везикулах

Домашнее задание:

1. Дайте определение понятию мембранный потенциал покоя (МПП) Мембранныйпотенциалпокоя. Мембраннымпотенциаломпокоя (МПП) или потенциаломпокоя (ПП) называют разность потенциалов покоящейся клетки между внутренней и наружной сторонами мембраны.

 

2. Перечислите и охарактеризуйте механизмы формирования мембранного потенциала покоя.

Потенциал покоя — мембранный потенциал возбудимой клетки (нейрона, кардиомиоцита) в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от −55 до −100 мВ. У нейронов и нервных волокон обычно составляет −70 мВ.

В 1902 году Юлиус Бернштейн выдвинул гипотезу, согласно которой клеточная мембрана пропускает внутрь клетки ионыК+, и они накапливаются в цитоплазме. Расчет величины потенциала покоя по уравнению Нернста для калиевого электрода удовлетворительно совпал с измеренным потенциалом между саркоплазмой мышцы и окружающей средой, который составлял около — 70 мВ.

Согласно теории Ю. Бернштейна, при возбуждении клетки её мембрана повреждается, и ионы К+ вытекают из клетки по концентрационному градиенту до тех пор, пока потенциал мембраны не становится равным нулю. Затем мембрана восстанавливает свою целостность, и потенциал возвращается к уровню потенциала покоя. Это утверждение, относящееся скорее к потенциалу действия, было опровергнуто Ходжкином и Хаксли в 1939 году.

Теорию Бернштейна касательно потенциала покоя подтвердил Кеннет Стюарт Коул (Kenneth Stewart Cole), иногда его инициалы ошибочно пишут как K.C. Cole, из-за его прозвища, Кейси («Kacy»). ПП и ПД изображены на известной иллюстрации Коула и Curtis, 1939. Этотрисуноксталэмблемой Membrane Biophysics Group of the Biophysical Society.

 

 

Возникает вследствие диффузии положительно заряженных ионов калия в окружающую среду из цитоплазмы клетки в процессе установления осмотического равновесия. Анионы органических кислот, нейтрализующие заряд ионов калия в цитоплазме, не могут выйти из клетки, однако ионы калия, концентрация которых в цитоплазме велика по сравнению с окружающей средой, диффундируют из цитоплазмы до тех пор, пока создаваемый ими электрический заряд не начнёт уравновешивать их градиент концентрации на клеточной мембране.

 

 

3. Дайте определения понятиям облегченная и простая диффузия.

Облегченная диффузия - это быстрое движение молекул через мембрану с помощью специфических мембранных белков, называемых пермеазами.

Простая диффузия — наиболее простой механизм поступления веществ в клетку: перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны

 

4. Дайте определения понятию активный транспорт

перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный активныйтранспорт) или через слой клеток (трансцеллюлярный активныйтранспорт).

5. Дайте определения понятиям осмос, осмотическое давление.

Осмосом называют одностороннюю самопроизвольную диффузию молекул растворителя сквозь полунепроницаемую мембрану из наименее концентрированного в более концентрированный раствор. Полунепроницаемой мембраной является такая, которая проницаема для клеток растворителя и непроницаема для растворенных в нем частиц. По определению, осмотическое давление – это такое гидростатическое давление, приложение которого к данному раствору может прекратить диффузию частиц, то-есть осмос.

 

6. Дайте определения понятиям эндо- и экзоцитоз.

 

Экзоцитоз (exocytosis. греч. exo — вне, снаружи и kytos — сосуд, здесь — клетка) - процесс выделения клеткой вещества во внеклеточное пространство. Инициирующую роль в процессах экзоцитоза любых клеток играют ионы кальция. За счет экзоцитоза происходит секреция многих макромолекул. При экзоцитозе белков у эукариот первоначально происходит селективное котрансляционное включение новосинтезируемых полипептидных цепей в эндоплазматический ретикулум через транслокон, их перемещение в аппарат Гольджи, а затем или в прелизосомный компартмент и лизосомы, или к цитоплазматической мембране, где часть белков встраивается в мембрану, а часть секретируется во внеклеточное пространство. У прокариот перенос полипептидных цепей в эндоплазматический ретикулум осуществляется посттрансляционно. Экзоцитоз разных соединений происходит с помощью транспортных пузырьков, секреторных гранул или вакуолей.

Эндоцитоз - процесс захвата и поглощения клеткой твердых частиц или живых клеток, капелек жидкости или специфических больших макромолекул, которые не могут проникать через пору в мембранных белках (эндоцитоз, опосредованный мембранными клеточными рецепторами или клатрин-зависимый эндоцитоз). Везикулы, образующиеся при последнем виде эндоцитоза, формируются в местах инвагинаций плазмалеммы, покрытых (окаймленных) с цитоплазматической стороны волокнистым материалом — мембранным белком клатрином;

Эндоцитоз - один из способов проникновения вируса в цитоплазму клетки-хозяина: прикрепленные к рецептору клетки вирионы сначала накапливаются в инвагинациях мембран, которые отпочковываются от мембраны внутрь клетки, образуя эндосомы; далее вирусная мембрана сливается с мембраной эндосомы, и вирус оказывается в цитоплазме клетки.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: